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ABSTRACT 

 The Burger’s-Huxley equation has been solved numerically by using 

two finite difference methods, the explicit scheme and the Crank-Nicholson 

scheme. A comparison between the two schemes has been made and it has 

been found that, the first scheme is simpler while the second scheme is more 

accurate and has faster convergent. Also, the stability analysis of the two 

methods by using Fourier (Von Neumann) method has been done and the 

results were that, the explicit scheme is stable under the condition 
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  and the Crank-Nicholson is unconditionally stable.  

Keywords: Stability Analysis, Explicit scheme, Crank-Nicholson scheme, 

Burger's-Huxley Equation, Fourier (Von Neumann) method. 

   Burger's-Huxleyالحل العددي وتحليل الاستقرار لمعادلة 
 فرهاد سليم                                 سعد مناع

 جامعة دهوك، كلية التربية
 17/12/2007: قبولتاريخ ال                               02/09/2007تاريخ الاستلام: 

 الملخص
الفروقات     عدديا باستخدام طريقتين من طرائق  Burger's-Huxleyلقد تم حل معادلة   

-Crank( والثانية هي طريقة )Explicit schemeالمنتهية، الأولى هي الطريقة الصريحة )

Nicholson وقد تبين أن الطريقة الأولى هي الأسهل  مقارنة بين نتائج كلتا الطريقتين( اذ تم عمل ،
اً. لقد تمت كذلك دراسة الاستقرارية العددية للطريقتين أسرع تقاربو  أدق في حين كانت الطريقة الثانية

( Von-Neumannباستخدام طريقة )  Burger's-Huxleyالمستخدمتين في حل معادلة 
Fourier 2، اذ تبين ان الطريقة الأولى مستقرة تحت الشرط

2

2( )

4 ( )

x
t

x 


 

+ 
بينما الطريقة   

 دون الشروط . من الثانية مستقرة 

معادلة   (،Crank-Nicholsonطريقة )، الطريقة الصريحة تحليل الاستقراية، ت المفتاحية: الكلما
Burger’s-Huxley ،( طريقةVon-Neumann )Fourier. 
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1. Introduction 

 Nowadays engineers and scientists in all fields of their research are 

using partial differential equations to describe their problems and thus such 

partial differential equations arise in the study of heat transfer, boundary-

layer flow, fluid flow problems, vibrations elasticity, circular and 

rectangular wave guides, in applied mathematics and so on.  

 Finding the exact solution for the above problems which involve 

partial differential equations is difficult in some cases. Hence we have to 

find the numerical solution of these problems using computers which came 

into existence[7]. 

 Parabolic PDEs describe practically useful phenomena such as 

transport chemistry problems of the advection-diffusion-reaction type and 

problem of this type plays an important role in the modeling of pollution of 

the atmosphere, ground water and surface water [3]. 

 For time-dependent problems considerable progress in Finite 

difference methods was made during the period of, and immediately 

following, the Second World War, when large-scale practical applications 

became possible with the aid of computers. A major role was played by the 

work of Von Neumann, partly reported in O’Brien, Hyman and Kaplan 

(1951). For parabolic equations a highlight of the early theory was the 

important paper by John (1952). For mixed initial–boundary value problems 

the use of implicit methods was also established in this period by Crank and 

Nicholson (1947).[9]. 

2. Mathematical model  

 We consider The generalized Burger's-Huxley equation [10] of the 

form  
 

2
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u u u u x t
t x x
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The equation (1) represents the generalized Burger's-Huxley equation with 

diffusion term and the equation (2) represents the generalized Burger's-

Huxley equation without diffusion term. 
 

With the initial condition  
1/
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and boundary conditions  
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and  
1/
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The Solitary wave solution of Eq. (1) is  
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where    is  diffusion coefficient  , , and s    are parameters  that  

 0 , 0, (0,1)s     .[2] 

2.1 Finite Difference Approximations 

 Let the interval [a,b] be divided into N equal subintervals with the 

length of each subinterval, called the grid size, given as 

                                      
N
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x

−
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 We define the point p as the point having the coordinate )( xp  , and 
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p

x ; that is,   Npforxpx
p

,.....,2,1,0)( ==  
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 The variable y corresponding to the point 
p

x  is denoted as 
p

y  that is, 

pp
yxy =)( .The three formulas for approximating first derivatives are: 
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The three previous equations are called, forward difference approximation, 

backward difference approximation and central difference approximation, 

respectively. And the approximating formula for the second derivative is[6]:  
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2.2 Grid points: 

 Let u  be a function of independent variables  x  and t  . The  (x,t)-

plane be divided into a network of rectangles of sides hx =  and kt =  

by drawing the set of lines . 
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, 0,1,2,3,......

(10)
, 0,1,2,3,......

x ph p

t qk q

= = 


= = 
 …(10) 

 The point of intersection of these families of lines are called 'Grid 

Point' (or some times referred to as Lattice Points , Mesh points) . [7] 

 

The general procedure to solve the partial differential equations by finite-

difference approximation is to obtain the solution at these grid points. In 

view of the lines phx =  , qkt =  defined above, we can rewrite the finite 

difference approximations to the first and second derivatives as follows: 

  The first order derivative of u   w.r.t. x  is given by: 
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Similarly, w.r.t. the independent variable t  , we have  
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In the (x,t)-plane the above derivatives can be analyzed as follows: [7] 

 

 

 

 

 

 

 

                                                                                       

 

             

 

Fig.(1):The grid 
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2.3 Derivation of Explicit Method For Burger's-Huxley Equation 

 Assume that the rectangle }0,0:),{( btaxtxR =  is subdivided 

into n-1 by m-1 rectangle with sides  hx =  and  kt = , as shown in 

Figure(1). Start at the bottom row, where 
1 0t t= = , and the solution is  

)(),( 1 pp xftxu = . 

 A method for computing the approximations to ),( txu at grid points in 

successive rows mqnptxu qp ,...,3,2for},,...,2,1:),({ == .  

 The grid spacing is uniform in every row: 
1p p hx x+ +=  and 

(
1p p hx x− −= ), and it is uniform in every column: 

1q q kt t+ +=  and (
1q q kt t− −= ) 

.Next, we drop the terms )()(),( 2hOandhOkO [5], and use the approximation 

qp
u

,  for ),(
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txu in equation (11),(15)  and substituted into equation (2 ) 

when 1 = ,to obtain  
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The result is the explicit forward difference equation to the Burger's-Huxley 

equation without diffusion term.  

Also, we drop the terms )h(Oand)h(O),k(O 2 , and use the approximation q,pu  

for )t,x(u qp in equation (11),(14) and(15)  and substituted into equation (1) 

to obtain  
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The result is the explicit forward difference equation to the Burger's-Huxley 

equation with diffusion term.  
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2.4 Derivation of Crank-Nicholson Method for Burger's-Huxley 

 Equation 

 The second order derivative (diffusion term) in Eq (1) is replaced by 

the average of its finite-difference of second order approximation at 
thq  and 

thq )1( +  times rows. This method was invented by John Crank and Phyllis 

Nicholson in (1947), [7] then the equation (1) is approximated as  
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The result is the crank-Nicholson equation to the Burger's-Huxley equation 

with diffusion term.  
 

 

 

 

 

 

 

 

 

 

Fig.(2):The crank-Nicholson stencil. 

In this time we must solve for the three values 1, 1 , 1,p q p qu u− + +  and   1, 1p qu + +  

For p=2,3,...,n-1.The terms on the right-hand side of equation (21) are all 

known. Hence the equations in (21) form a tridiagonal linear system 

 AX=B      …(22) 

1+q,pu 11 ++ q,pu 11 +− q,pu 

q,pu q,pu 1− q,pu 1+ 
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 The boundary conditions are used in the first and last equation(i.e.   

1, 1, 1 0 ( )q qu u g t+= =  and 
, , 1 1( )n q n qu u g t+= = , respectively ). The equations (21) 

are especially pleasing to view in their tridiagonal matrix form   AX=B . 
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 
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When the Crank-Nicholson method is implemented with a computer, the 

linear system AX=B  can be solved by either direct methods or by iterations 

method. 

We use the direct methods (Gaussian Elimination Method) to solve the 

linear system in eq.(22) in this study. 

3. Stability Analysis 

 The errors are introduced by the truncation of the series which are 

used to represent the derivatives in the process of replacing the differential 

equations by finite difference equation. We are interested in studying the 

growth of these errors and find the conditions for which the errors will be 

minimized from one time step to the next. The solution obtained by 

numerical methods definitely differs from the exact solution but this 

quantum of difference is most important. 

 The difference between the numerical solution and the exact 

solution, at any given step is known as the total error at a particular step. 

The most important aspect of the numerical methods, with so many different 

techniques available to solve a differential equation, is to minimize this error 

and simultaneously obtain the solutions with least error. The total error at 

any stage is the sum of round-off error and truncation error. [7] 
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3.1 Stability by the Fourier series method ( Von Neumann's method) 

 This method, developed by Von Neumann during World War II, was 

first discussed in detail by O'Brien, Hyman and Kaplan in a paper published 

in 1951,[8].An expression of the Fourier series as  )cxcos(an  or  

 )cxsin(an , where c is some constant. Alternatively, this expressed in 

complex exponential form is taken in the form, xie   where   is a positive 

constant and 1−=i . We then assure xie)t(   as a solution of the difference 

equation. 

 The general principle for this method is replacement of the solution 

given by finite difference method at time t  by the value xie)t(   [7] 

3.2 Stability Analysis of Explicit Method by Fourier (Von Neumann)   

Method 

 To apply Von Neumann's method on equation (2), we go to 

linearized stability analysis [1] and get after we eliminate the non linear 

term   

      u
t

u
−=




        ...(23) 

By using the explicit method for equation (23) we get  

q,p

q,pq,p
u

t

uu
−=



−+1
       ...(24) 

Substituting q,pu  by  xie)t(   in equation (24) yields  

xi
xixi

e)t(
t

e)t(e)tt( 


−=


−+
 

xixi e)t(e
t

)t()tt(  −=










−+
,   dividing both sides by  

xie 
 , we get  

)t(t)t()tt( −=−+  

 )t(]t[)tt( −=+ 1   

=−=


+
 ]t[

)t(

)tt(
1                                            ...(25) 

Where   is An amplification factor, the solution from a particular plane  

)t(  to the next plane )tt( + ,  )t()tt( −+  must start decreasing or 

alternatively )t(  must be a bounded function, i.e. )t(  should not tend to 

infinity for large t .From eq.(25), for boundedness of )t( , we need  

                       1+ )t(/)tt(  

       i.e.           1  

        11 − t       ...(26) 
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               111 −− t  

In above inequality, the right-side inequality is 
                   11 − t  

This is always true. Hence, in order that Eq (26)  is to be satisfied, we need 

                         t−− 11  

                      



2

t       ...(27) 

The inequality (27) represents the imposed condition for explicit method for 

Burger's- Huxley equation without diffusion term to be stable. 

 Now, the stability analysis of explicit method by Fourier (Von 

Neumann) on eq.(1), also we go to linearized stability analysis and get after 

we eliminate the non linear term to obtain  

    u
x

u

t

u
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
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


2

2

       ...(28)  

By using the explicit method for equation (28) we get  
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111 2
    ...(29) 

Substituting q,pu  by  xie)t(   in equation (29) yields 
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e)t(e)tt( 
+−

−=


+−
−



−+
2

2
 

  xixi)xixixi e)t(eee
)x(

)t(
e

t

)t()tt( − −=+−



−











−+
2

2
  ...(30) 

Dividing both sides in above equation by  
xie 

 to obtain 

  )t(tee
)x(

)t(t
)t()tt( )xixi −=+−




−−+ − 2

2
 

Assume that 
2)x(

t
r




=  

  )t(tee)t(r)t()tt( )xixi −−+=−+ − 2  

      )t(txsinixcosxsinixcos)t(r)t()tt( −−++−=−+ 2  

      )t(txcos)t(r)t()tt( −−=−+ 12  

)t(t)/x(sin)t(r)t()tt( −−=+ 24 2  

   =−−=


+
]t)/x(sinr[

)t(

)tt(
241 2     ...(31) 

Where   is an amplification factor, the necessary and sufficiently condition 

for numerical stability is  1   that is   

                   1


+

)t(

)tt(
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      1241 2 −− t)/x(sinr      ...(32)  

      12411 2 −−− t)/x(sinr  

In above inequality, the right-side inequality is 

           1241 2 −− t)/x(sinr  

      t)/x(sinr − 24 2  

Since  
2)x(

t
r




=  0  and this is always true. 

    Hence, in order that Eq(32) is to be satisfied, we need  

              t)/x(sinr −−− 2411 2  

              t)/x(sinr + 242 2   

              )/x(sinr
t

2
42

1 2 


−  

For some , )/x(sin 22   is unity and hence the above condition reduces to  

                    
42

1 t
r


−  

                    
4

2 t
r

−
       ...(33)   

Since  
2)x(

t
r




= , implies  

4

2
2

t

)x(

t −





 

                
2

2

4

2

)x(

)x(
t

+


       ...(34)  

The inequality (34) represents the imposed condition for explicit method for 

Burger's- Huxley equation with diffusion term to be stable. 

3.3 Stability Analysis of Crank-Nicholson Method by Fourier (Von 

Neumann) Method 

 By using the Crank-Nicholson Method for the equation (28) we 

obtain 

 

q,p

q,pq,pq,pq,pq,pq,pq,pq,p
u]

)x(

uuu

)x(

uuu
[

t

uu
−=



+−
+



+−
−



− ++++−+−+

2

11111

2

111 22

2
  ...(35) 

Substituting qpu ,  by  xiet  )(  in equation (35) yields 

xi
)xx(ixi)xx(i

)xx(ixi)xx(ixixi

e)t(]
)x(

e)tt(e)tt(e)tt(

)x(

e)t(e)t(e)t(
[

t

e)t(e)tt(


+−

+−

−=


+++−+

+


+−
−



−+

2

2

2

2

2
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xi

xixixixixixixi

e)t(

e]ee[
)x(

)tt(
e]ee[

)x(

)t(
e

t

)t()tt(



−−

−=

+−


+
−+−




−











−+
2

2
2

2 22

Dividing both sides in above equation by  
xie 

 to obtain 

)t(]ee[
)x(

)tt(
]ee[

)x(

)t(
]

t

)t()tt(
[ xixixixi −=+−



+
−+−




−



−+ −− 2
2

2
2 22

)t(t]ee[
)x(

)tt(t
]ee[

)x(

)t(t
)]t()tt([ xixixixi −=+−



+
−+−




−−+ −− 2

2
2

2 22

Assume that 
2)x(

t
r




=  

)t(t]xsinixcosxsinix[cos
)tt(r

]xsinixcosxsinix[cos
)t(r

)]t()tt([

−=−++−
+

−

−++−


−−+

2
2

2
2  

)t(t]xcos)[tt(r]xcos)[t(r)t()tt( −=−++−+−+ 11  

)t(t)]/x(sin)[tt(r)]/x(sin)[t(r)t()tt( −=+++−+ 2222 22  

)t(]t)/x(sinr[)tt()]/x(sinr[ −−=++ 221221 22  

)/x(sinr

t)/x(sinr

)t(

)tt(

221

221
2

2

+

−−
=



+
 

=
+

+−
=



+


)/x(sinr

]t)/x(sinr[

)t(

)tt(

221

221
2

2

 

For stability, we need  1


+

)t(

)tt(
,  i.e. 1  

t,,,r,
)/x(sinr

]t)/x(sinr[


+

+−
1

221

221
2

2

 

Hence the Crank-Nicholson method for Burger's-Huxley equation is 

unconditionally stable. 

4. Numerical result 

we take 0.5 , 0.1 , 0.2, 0.3 , 1 , 1t s   = = = = = = , With the initial 

condition  

     
1/

1( ,0) tanh[ ]
2 2

s

u x A x
  

= + 
 

     

and boundary conditions  
1/

1 2(0, ) tanh[ ]
2 2

s

u t A A t
  

= + − 
 

and  
1/

1 2(1, ) tanh[ (1 )]
2 2

s

u t A A t
  

= + − 
 

            

The Solitary wave solution of Eq. (1) is  
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1/

1 2( , ) tanh[ ( )]
2 2

s

u x t A x A t
  

= + − 
 

 

where  
2

1

4 (1 )
,

4(1 )

s s s
A

s

  


− + + +
=

+
 

2

2

(1 )( 4 (1 ))

1 2(1 )

s s
A

s s

    + − − + + +
= −

+ +
 

Table 1: Comparison between explicit and implicit with exact solitary 
0.1, 0.2, 0.3, 1, 0.1, 0 1, 0.5x x t   = = = =  =   =  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure (3):A comparison between explicit and Crank-Nicholson with exact 

solitary wave solution 

Explicit Crank-Nicholson 
Exact  Solitary 

wave solution 

0.1516 0.1516 0.1516 

0.1503 0.1517 0.1522 

0.1500 0.1520 0.1529 

0.1502 0.1524 0.1536 

0.1507 0.1529 0.1542 

0.1513 0.1535 0.1549 

0.1520 0.1542 0.1555 

0.1528 0.1550 0.1562 

0.1539 0.1560 0.1568 

0.1555 0.1570 0.1575 

0.1582 0.1582 0.1582 
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 It’s clear from table (1) and figure (3) that Crank-Nicholson method 

is much more accurate and faster than explicit method to the solitary exact 

solution. Also, the meshes in figures (4), (5) and (6) show that Crank-

Nicholson method is better to use in solving Burger’s-Huxley equation. 

Table (2) and figure (7) show the effect of diffusion term. 
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Figure (4): Solitary exact solution 
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Figure (5):  Crank-Nicholson  

      Method 
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Figure (6): Explicit Method 



Saad A. Manaa and Farhad M. Saleem 
 

 

 74 

 

 

 

                        

                                        

 

 

                
 
 
 

 

 

 

 

 

   

 

 

 

5. Conclusion 

 We concluded that the diffusion term to the Burger’s-Huxley is as 

it’s clear in table (2) and figure (7). Also we found that Crank-Nicholson 

method is more accurate and has faster convergent than explicit method as 

shown in table (1) and figures  3,4,5 and 6. 

        For the numerical stability we found that the explicit method is stable 

under the condition 
2

2

2( )

4 ( )

x
t

x 


 

+ 
  and Crank-Nicholson method is 

unconditionally stable. 

 

 

 

 

 

 

 

 

 

 

Explicit with 

diffusion term 
Explicit without 

diffusion term 

0.1516 0.1516 

 0.1503 0.1487 

0.1500 0.1494 

0.1502 0.1500 

0.1507 0.1507 

0.1513 0.1513 

0.1520 0.1520 

0.1528 0.1526 

0.1539 0.1533 

0.1555 0.1539 

0.1582 0.1582 

 Figure (7):A comparison between with 

diffusion and without diffusion term 

0 0.2 0.4 0.6 0.8 1
0.148

0.15

0.152

0.154

0.156

0.158

0.16

0.162

 with diffusion

without diffusion

0.1, 0.2, 0.3, 1, 0.1

0 1, 0.5

Table 2 :Comparison between explicit with

diffusion and without diffusion term

x

x t

   = = = =  =

  =
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