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ABSTRACT

The Burger’s-Huxley equation has been solved numerically by using
two finite difference methods, the explicit scheme and the Crank-Nicholson
scheme. A comparison between the two schemes has been made and it has
been found that, the first scheme is simpler while the second scheme is more
accurate and has faster convergent. Also, the stability analysis of the two
methods by using Fourier (Von Neumann) method has been done and the
results were that, the explicit scheme is stable under the condition

< 2" and the Crank-Nicholson is unconditionally stable.
4y + 5B(AX)?

Keywords: Stability Analysis, Explicit scheme, Crank-Nicholson scheme,
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1. Introduction

Nowadays engineers and scientists in all fields of their research are
using partial differential equations to describe their problems and thus such
partial differential equations arise in the study of heat transfer, boundary-
layer flow, fluid flow problems, vibrations elasticity, circular and
rectangular wave guides, in applied mathematics and so on.

Finding the exact solution for the above problems which involve
partial differential equations is difficult in some cases. Hence we have to
find the numerical solution of these problems using computers which came
into existence[7].

Parabolic PDEs describe practically useful phenomena such as
transport chemistry problems of the advection-diffusion-reaction type and
problem of this type plays an important role in the modeling of pollution of
the atmosphere, ground water and surface water [3].

For time-dependent problems considerable progress in Finite
difference methods was made during the period of, and immediately
following, the Second World War, when large-scale practical applications
became possible with the aid of computers. A major role was played by the
work of Von Neumann, partly reported in O’Brien, Hyman and Kaplan
(1951). For parabolic equations a highlight of the early theory was the
important paper by John (1952). For mixed initial-boundary value problems
the use of implicit methods was also established in this period by Crank and
Nicholson (1947).[9].

2. Mathematical model
We consider The generalized Burger's-Huxley equation [10] of the
form

ou sou P Svhs 1
—t+ol’ ——v——= 1-u”)u’ -9), 0<x<1t=>0 ( )
P o ox? pu( ) )

%+w5%=ﬂu(1—u5)(u5—5), 0<x <1, t>0 ..(2)

The equation (1) represents the generalized Burger's-Huxley equation with
diffusion term and the equation (2) represents the generalized Burger's-
Huxley equation without diffusion term.

With the initial condition

u(x,O):(g+gtanh[Alx]j S =f (x) ...(3)
and boundary conditions
u(O,t)=[g+gtanh[—AlA2t]) =g,(t), t>0 ...(4)
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and
5 5 1/s 5
U@t =| Z+StanhlA A-AN] | =g,0). t=0 .(5)

The Solitary wave solution of Eq. (1) is
~ é é ~ 1/s
u(x,t)—(2+ 2tanh[A1(x Azt)]j

where

_ 2
A= as +5«/a +4,b’(1+s)5,

t 4(1+5)

o _ 0o _(+s—8)ca+yo’ +4p+s))

1+s 2(1+5s)
where v is diffusion coefficient «,s,5 ands are parameters that

B>0,s5>0,6¢e(0,1) .[2]

2.1 Finite Difference Approximations
Let the interval [a,b] be divided into N equal subintervals with the
length of each subinterval, called the grid size, given as

AX=b_7a
N
We define the point p as the point having the coordinate p(ax), and
denote that point x ; thatis, x = p(ax) for p=012,....,N
Thismeansthat x, =a, x, =b, x,,=(p+1)AX, X =(p-1Ax, etc.

The variable y corresponding to the point x  is denoted as y, that is,
y(x,) =y, The three formulas for approximating first derivatives are:

dl ~yp+1_yp

(dx)p~ AX ...(6)
(dl) Jp Yo ..(7)
dx '’ AX

d Yo~ Yo

R (8

The three previous equations are called, forward difference approximation,
backward difference approximation and central difference approximation,
respectively. And the approximating formula for the second derivative is[6]:

(LZY) ~ yp+1 _2yp + yp—l .. (9)

dx® " (Ax)?

2.2 Grid points:

Let U be a function of independent variables x and t . The (x,t)-
plane be divided into a network of rectangles of sides Ax=h and At =k
by drawing the set of lines .
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x=ph, p=02123,.... (10)
t=qk, q=0123,...
The point of intersection of these families of lines are called 'Grid

Point' (or some times referred to as Lattice Points , Mesh points) . [7]

The general procedure to solve the partial differential equations by finite-
difference approximation is to obtain the solution at these grid points. In
view of the linesx = ph , t =gk defined above, we can rewrite the finite
difference approximations to the first and second derivatives as follows:

The first order derivative of U w.r.t. X is given by:

u, (Xp,tq)zup‘rlth_upvq +O(h) (11)
uy (Xp'tq):upyq _hupil’q +O(h) (12)
U (1) =224 0(h?) .(13)
-2
and Uy (X p ’tq) = uerl'q :gq +up71’q +O(h2) o (14)
Similarly, w.r.t. the independent variable t , we have
U (X 1) =2 222 O(K) ..(15)
ut(xp,tq):wth(k) ...(16)
ut(xp,tq)=w+0(kz) ..(17)
-2
and un(xp’tq):up,qﬂ kuzpmup,q—l_‘_o(kz) ...(18)
In the (X,t)-plane the above derivatives can be analyzed as follows: [7]
t4
r\up'q+1
O G
/up,q d
¥ O
K Upo-
A >
N

Fig.(1):The grid
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2.3 Derivation of Explicit Method For Burger's-Huxley Equation
Assume that the rectangle R={(x,t):0<x<a, 0<t<b} is subdivided

into n-1 by m-1 rectangle with sides Ax=h and At=k, as shown in
Figure(1). Start at the bottom row, where t =t, =0, and the solution is
u(x,,t)="~f(x,)-

A method for computing the approximations to u(x,t)at grid points in
successive rows {u(x,,t,): p=12,...n},for q=23..,m.

The grid spacing is uniform in every row: x_ =x,, and
(x,,=x,,), and it is uniform in every column: t =t and (t_ =t )
Next, we drop the termsO(k),0(h)and O(h?) [5], and use the approximation
U,q for u(x,,t,)in equation (11),(15) and substituted into equation (2 )

when 6 =1,to obtain

u Upg Upiig —Upg

+alp g —h =[3up’q(1—up1q )(up]q—S)
ak ak
- UpqUpeag —Tuzp,q =kBup g (1= g )(Upq —8)

p.a+l

k

u u

pa+l Y pg

Let r:a—k
h

pagYpirg + ruzp,q + kBUZp,q _kBSUp,q - kBU3p,q + kBSUzp,q
SUygq=A-kBS—ru W, +(+kB+kpou, —kpu® ...(19)
The result is the explicit forward difference equation to the Burger's-Huxley

equation without diffusion term.
Also, we drop the terms O(k),0(h)and O(h?), and use the approximation u,

for u(x,.t,)in equation (11),(14) and(15) and substituted into equation (1)

:>up'q+1=upyq—ru u

to obtain
Upger—Up Upiq —Up, Upgq—2Upg+Upyg,
pQ+k Pl b, g — qh pa _ P4 h';q P Bup g (1-Up g N(Up g —8)
ok ok vk
Ypan ~Upg T ~UpoUpizg =7 ~U pa _h_z(upfl,q —2Upq +Upug)=kBup (1-upq)(upq —3)

let r:% and ,m1:;—|; we get

Up g =Ml g +(0—2my kB3, o +(or +kB+kBSS 4 —kBuS
+(m1 —(X.rup'q)"p_'_lvq

The result is the explicit forward difference equation to the Burger's-Huxley
equation with diffusion term.

.(20)
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2.4 Derivation of Crank-Nicholson Method for Burger's-Huxley
Equation
The second order derivative (diffusion term) in Eq (1) is replaced by

the average of its finite-difference of second order approximation at qth and

(q+1)™ times rows. This method was invented by John Crank and Phyllis

Nicholson in (1947), [7] then the equation (1) is approximated as
u u u u u —2u,, +U

pa+l ~ Mpg +ou p+lg — Ypg p-1g p.q p+Lg
k p.g h 2h2
u —-2u +u
p-1,q+1 p,q+l p+lg+l 4
+ 2 I=Pupq(l-upq)(upq —3)
2h
ok ok - vk 5
Upaa “Ypa ¥ UpaUprag =77 pa— o2 [Upag—2Upg +Upig
2
+ upfl,q+1 - 2up,q+l + up+l,q+l] :(kBup,q - kBU P.a )(up,q _8)
vr
Let r—X and m, =—
h 2h

2
=Uu Up‘q + arupvq U ard pa mzupfl,q + ZTT'IZUp‘q - mzupﬂyq

2 3 2
s MUy =kpBu® —kpou,  —kpu®,  +kpou’,
= -MyU, 1441 +(1+ 2m, )‘J pg+l ~MaUp g =MyUp g +(1_2m2 - kBS)U P
+(or +kB+kBd)usq —kBuj o + (m2 —aru,, )J pilg

The result is the crank-Nicholson equation to the Burger's-Huxley equation
with diffusion term.

pg+l p+Lg

—MyU, 4 +2MU

.21

u p-1,q+1 u p,g+1 u p+1,9+1
[ 0
o o
Up1q Upg Upi1g

Fig.(2):The crank-Nicholson stencil.

In this time we must solve for the three values u U,qqand u

For p=2,3,...,n-1.The terms on the right-hand side of equation (21) are all
known. Hence the equations in (21) form a tridiagonal linear system
AX=B ...(22)

p—1,9+1? p+1,9+1
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The boundary conditions are used in the first and last equation(i.e.
Uy =Upqn =9ot) and u,, =u, ., =g,(t), respectively ). The equations (21)

are especially pleasing to view in their tridiagonal matrix form AX=B.

(1+2m,) -m, 0 0 0 [ Upgu |
-m,  (1+2m,) -m, 0 0 U3 g41
0 -m, (1+2m,) -m, 0 Ug g1
0 -my (I+2my)  -m, 0 Un-3,g+1
0 0 -my o (1+2my)  -my |[Unaqu
I 0 0 0 -m  (1+2m,)] | Un-1041 |
[ MUy gy + MUy, +(@—=2m, —k BS), +(ar +k B+k Bo7,, —k pu®,, +(m, —aru, u,, ]

MU,  +(@—2m, —k o), +(ar +k B+k oY’y —k pu’;, +(m, —aru, u,,
MUy, +(@—2m, —k go),, +(ar +k B+k o’,, —k pu’,, +(m, —aru, Ju;,

mzun—3,q + (1_2m2 _kﬂg)un—z,q + (ocr + kﬂ+ kﬂé‘)u 2n—Z,q - kﬂusn—z‘q +(m2 _arun—z,q )un—l‘q
_mzun—z,q +(1_2m2 _kﬂé)un—l,q +(ar +kﬂ+kﬂ§)u2nfl,q _kﬂu:‘)nfl,q +(m2 _arunfl,q )un,q +m2un,q+l_

When the Crank-Nicholson method is implemented with a computer, the
linear system AX=B can be solved by either direct methods or by iterations
method.

We use the direct methods (Gaussian Elimination Method) to solve the
linear system in eq.(22) in this study.

3. Stability Analysis

The errors are introduced by the truncation of the series which are
used to represent the derivatives in the process of replacing the differential
equations by finite difference equation. We are interested in studying the
growth of these errors and find the conditions for which the errors will be
minimized from one time step to the next. The solution obtained by
numerical methods definitely differs from the exact solution but this
quantum of difference is most important.

The difference between the numerical solution and the exact
solution, at any given step is known as the total error at a particular step.
The most important aspect of the numerical methods, with so many different
techniques available to solve a differential equation, is to minimize this error
and simultaneously obtain the solutions with least error. The total error at
any stage is the sum of round-off error and truncation error. [7]
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3.1 Stability by the Fourier series method ( Von Neumann's method)
This method, developed by VVon Neumann during World War 11, was

first discussed in detail by O'Brien, Hyman and Kaplan in a paper published

in 1951,[8].An expression of the Fourier series as Zan cos(cx) oOr

Zan sin(cx), where ¢ is some constant. Alternatively, this expressed in

complex exponential form is taken in the form, e"™ where y is a positive

constant and i =+v~1. We then assure y(t)e™ as a solution of the difference

equation.
The general principle for this method is replacement of the solution
given by finite difference method at time t by the value y(t)e™ [7]

3.2 Stability Analysis of Explicit Method by Fourier (Von Neumann)
Method
To apply Von Neumann's method on equation (2), we go to
linearized stability analysis [1] and get after we eliminate the non linear
term

%“:—emu ..(23)
By using the explicit method for equation (23) we get
Upgu —Up,
p.g ]-At p.g :_SBUp,q (24)

Substituting U, by w(t)e™ in equation (24) yields

w(t + At)e™ —y(t)e™
At
{\V(HM)—\v(t)
At
W(t+At)—y(t)=—3PAty(t)
y(t+At)=[1-3BAt]y(t)

S WUHAY b spat] = ..(25)
w(t)

Where ¢ is An amplification factor, the solution from a particular plane
y(t) to the next plane w(t+At), |w(t+At)—y(t) must start decreasing or
alternatively w(t) must be a bounded function, i.e. y(t) should not tend to
infinity for large t .From eq.(25), for boundedness of y(t), we need
lw(t+At)/y(t) <1
ie. gl <1
[L-3pAt| <1 ...(26)

= —3By(t)e™

LWX:—SBW(t)e”X, dividing both sides by ™ , we get
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-1<1-8pAt<1
In above inequality, the right-side inequality is
1-8pAt <1
This is always true. Hence, in order that Eq (26) is to be satisfied, we need
—1<1-03pAt

o At<Z (27

op
The inequality (27) represents the imposed condition for explicit method for
Burger's- Huxley equation without diffusion term to be stable.
Now, the stability analysis of explicit method by Fourier (Von
Neumann) on eg.(1), also we go to linearized stability analysis and get after
we eliminate the non linear term to obtain

ou o4
E_V@(_Z__ESBU (28)
By using the explicit method for equation (28) we get
Upgin —Upq  Upag—2Upq+Upug
o v ()’ =—8Pu ..(29)

Substituting u,, by w(t)e”™ in equation (29) yields
w(t+ Ae™ —y(t)e™  w(t)e"™ ) —2y(t)e™ + y(t)e" )
At (AX)?

W(t+A) —w(t) |ix V() [ ipax ivax) ix _ _ i
{ X }ey (AX)Z[eY 2+e" }ey SPy(t)e"” ...(30)

=—3pu(t)e™

Dividing both sides in above equation by € to obtain
y(t +At)—\y(t)—VAt—W(;[) e X _ 2+eW’]=—8BAtw(t)

(Ax)

VAL
(Ax)
= y(t+ A —y(t) = ry(t)le ™ + ") 2| - 5ty (t)

w(t+At) —y(t) = ry(t)[cos yAX — i SinyAX + COS YAX + i sinyAx — 2] — S BAty(t)
W(t+At)—y(t) = 2ry(t)[cos yAx —1] - SpAty(t)
= y(t+At)=y(t)—4ry(t)sin’(yAx/ 2) - SpAty(t)

Assume that r =

2

‘V(HM):[1—4rsin2(yAx/2)—3BAt]=§ (31)
w(t)

Where & is an amplification factor, the necessary and sufficiently condition

for numerical stability is [¢[<1 thatis

y(t+At)
y(t)

<1
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= l—4rsin®(yAx/ 2)—8pAt| <1 ..(32)

= —1<1-4rsin’(yAx/2)-8pAt <1
In above inequality, the right-side inequality is
1—4rsin®(yAx/2)—-8pAt <1
= —4rsin®(yAx/ 2) < 8pAt
VAt
(AX)
Hence, in order that Eq(32) is to be satisfied, we need
—1<1-4rsin®(yAx/2)-3BAt
2> 4rsin®(yAx/ 2)+ 8pAt
%—%2 rsin®(yax/ 2)
For some B, sin?(yAx/2) is unity and hence the above condition reduces to
<l OPAL
2 4

r£% .(33)

Since r= > >0 and this is always true.

Since - VAt VAt _ 2-3pAt
(Ax)? '

implies <
P Ax)? 4

:Atgﬂ ..(34)
4v + S Ax)?

The inequality (34) represents the imposed condition for explicit method for
Burger's- Huxley equation with diffusion term to be stable.

3.3 Stability Analysis of Crank-Nicholson Method by Fourier (Von
Neumann) Method
By using the Crank-Nicholson Method for the equation (28) we
obtain

Upgit —Upgq v Upaq—2Upg+Upag Upigu —2Upgqin+Upiiger o S (35)
Y 5 + 2 1=-Poupq -
At 2 (AX) (Ax)

Substituting u,, , by w(t)e” in equation (35) yields
Wt Ae™ —y()e™ v (D" - 2y(t)e 4 (e |
At 2 (Ax)?
Wt + At )e"O8) _ oyt + At)e™ 4+ y(t + At )X+
(Ax)?

1=-8Bw(t)e™
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|:W(t +At)_\V(t):|ein _ V\V(t)z [e—iyAx _2+eiyAX ]eiyx _ VW(t +A2t) [e—iyAX _2+eiyAX ]eiyx
At 2( AX) 2(AX)

=—3Py(t)e™
Dividing both sides in above equation by e"™ to obtain
[\V(t +At)_\V(t)] _ V\V(t) [efiyAX 24 eiyAx] _ V\V(t + At) [e—iyAX 24 eiyAx] :_SB\V(t)

At 2(Ax)? 2(Ax)?
[y(t+ At)—y(t)] -VZ?IA—")’((;Z) [e7% _ 24 g™y —% [e7 _ 2.4 e™ ] = _5pAty(t)
VAt

Assume that r =
(AX)?

[w(t+At)—wy(t)] —rWT(t)[COSyAX—iSinyAX+COSyAX+ isinyAx—-2]

—M[003yAx—isinyAx+005yAx+isinyAx—Z] = —dPAty(t)
y(t+At)—y(t)+ry(t)[1—cosyAx] + ry(t+ At)[1—cosyAx] = -3 BAty(t)
W(t+At) —y(t)+ry(t)[2sin®(yAx/ 2)] + ry(t + At)[2sin®(yAx / 2)] = -8 BAty(t)
[1+2rsin®(yAx/ 2)]w(t + At)=[1—2rsin®(yAx/ 2) - 8pAtTy(t)
w(t+At) 1-2rsin®(yAx/2)-3pAt
w(t) 1+ 2rsin®(yAx/ 2)
_ w(t+at) 1-[or sin?(yAx/ 2)+ 8BAt] _
w(t) 1+ 2rsin®(yAx/ 2)
y(t+At)
w(t)

For stability, we need <1, ie. [g<1

|1—[2rsin®(yAx/ 2)+ 5pAt]|
| 1+2rsin’(yax/2) |

Hence the Crank-Nicholson method for Burger's-Huxley equation is
unconditionally stable.

<1, Vr,5,p At

4. Numerical result
we take t=05,a=01,8=02, §=03,s=1,v=1, With the initial

condition
5 5 1/s
u(x,0) = (2+2tanh[Alx ]j
and boundary conditions
1/s 1/s
u(0,t) = [‘; +§tanh[—A1A2t]) and y(t)= (‘; + gtanh[Al(l— At )])

The Solitary wave solution of Eq. (1) is
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1/s
u(x,t)= (5+5tanh[Al(x —Azt)]j

2 2
where

_ 2
A= as +Sqa +4ﬁ(1+s)5

! 4(1+s)

PR Qs =S)(—a+ya’ +4p(1+s))

1+s 2(1+5s)

Table 1: Comparison between explicit and implicit with exact solitary
=01 p=02 6=03 v=1,Ax=01 0<x<l,t=05

Explicit Crank-Nicholson e Sollt_ary
wave solution
0.1516 0.1516 0.1516
0.1503 0.1517 0.1522
0.1500 0.1520 0.1529
0.1502 0.1524 0.1536
0.1507 0.1529 0.1542
0.1513 0.1535 0.1549
0.1520 0.1542 0.1555
0.1528 0.1550 0.1562
0.1539 0.1560 0.1568
0.1555 0.1570 0.1575
0.1582 0.1582 0.1582

0.16

0158

0156

0.154

0.152

. . . .
0.2 04 0.6 0.8 1

Figure (3):A comparison between explicit and Crank-Nicholson with exact
solitary wave solution
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It’s clear from table (1) and figure (3) that Crank-Nicholson method
IS much more accurate and faster than explicit method to the solitary exact
solution. Also, the meshes in figures (4), (5) and (6) show that Crank-
Nicholson method is better to use in solving Burger’s-Huxley equation.
Table (2) and figure (7) show the effect of diffusion term.

Figure (4): Solitary exact solution Figure (5): Crank-Nicholson
Method

Figure (6): Explicit Method
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Explicit with Explicit without

diffusion term diffusion term

0.1516 0.1516

0.1503 0.1487

0.1500 0.1494

0.1502 0.1500

0.1507 0.1507

0.1513 0.1513

0.1520 0.1520

0.1528 0.1526

0.1539 0.1533

0.1555 0.1539 N
0.1582 0.1582 S0 e e e

Table 2 :Comparison between explicit with ~ Figure (7):A comparison between with

diffusion and without diffusion term diffusion and without diffusion term

a=01 =02 6§=03 v=1Ax =01
0<x <1,t=05

5. Conclusion
We concluded that the diffusion term to the Burger’s-Huxley is as

it’s clear in table (2) and figure (7). Also we found that Crank-Nicholson
method is more accurate and has faster convergent than explicit method as
shown in table (1) and figures 3,4,5 and 6.

For the numerical stability we found that the explicit method is stable
under the condition ar<_ 2%’  and Crank-Nicholson method is

4v + 5B(Ax)*

unconditionally stable.
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