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ABSTRACT

We solve in this paper some machine scheduling problems with
certain conditions; the solution had been made by using dynamic
programming procedures with a fixed time for all the algorithms. Some of
the algorithms described in the paper represent a modification to some
mathematical programming algorithms and some of them are new or a
generalization to others. The optimal solution of all these algorithms will be
done with a fixed complexity time, which may lead us to solve them easier
and faster.
Key words: scheduling, single machine, set-up times, dynamic
programming, fixed complexity.
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1. Introduction

In the recent years, there has been a large importance in scheduling
problems with set up times. The set up times occur when we have different
families of jobs, as an example of families and set ups; this may happen in
an industrial unit of coloring or painting plastic or wood products. Products
(jobs) with the same colors may represent a one class (family). Cleaning the
machine from a particular color to receive another different product color
will represent a set-up time so the products with the same color will
represent a family, the families of jobs may possibly take place in other
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fields of the life. We derive in this paper some dynamic programming
algorithms to solve single machine scheduling problems with set up time
families with an order of complexity which is fixed for all our dynamic
programming algorithms, in other words with the same complexity
algorithm time which may help us to solve the problems more rapidly.
Before describing the dynamic programming algorithms we will use the
standard classification scheme for scheduling problems (Graham et al. [7])
which is a/ /¢, where « indicates the machine environment, in this

paper a will be equal to 1, which indicates that we will have single
machine problems(«a =1), S describes the job and family characteristics
and the constraints on the jobs, and ¢ defines the objective function to be
minimized. Before describing the algorithms, let {1, 2, ...,n} denote the set
of jobs to be processed, also for each family f (f=1, 2, ...,F), we will define
the following parameters: p,,,d;, andw,, which represent the processing

time, the due date and the weight of the i" job of the " family, respectively.
Also for each family f we will assign a positive specific amount, which is
called the set-up time ss.

For each job i we will define the following variables:

Ci . is the completion time of job i,
Li=Ci-di . is the lateness of job i,
Ti = max {Li, 0} : is the tardiness of job i.

Potts and Kovalyov [10] gave a preview of solving some machine
scheduling problems for single machine and more than one machine, by
using dynamic programming algorithms, the rest of this paper will be
organized as follows: First we will give in section 2, a general description of
our algorithm and then we will give the complexity time of the algorithm. In
section 3, we will discuss our dynamic programming algorithms. This
discussion may be made as follows:- We will discuss the dynamic algorithm
for the sum of completion times problem l/sf/Zci which is a

generalization to that one which is described in [9], moreover in the same
section, we will describe the sum of the weighted completion times problem
1/Sf/ZWiCi and solve it by another dynamic programming algorithm which

will represent a generalization to that which is described in [1], we will use
a dynamic programming algorithm to solve the square completion times

problem 1/Sf/ZCi2, in the same section, an algorithm of finding the

optimal solution of the weighted summation of square completion times,
with equal weights 1/ st, Wi = Ws /Zwici2 , and the weighted sum of square

completion times, with equal processing times 1/ s, pif = pr /Zwicizwill
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also be considered in this section. In the same section, we will use a
dynamic programming algorithm to solve the sum of tardy jobs with equal
due dates 1/ sf, dit = ds /ZTi , and to solve the sum of tardy jobs with equal

processing times 1/ s, pi f = pr /ZTi , also in the same section, we will

describe a dynamic programming algorithm to solve the weighted
summation of tardy jobs with equal weighted due dates 1/ s, wifdi = ws df /
ZWiTi Finally the same section, will describe an algorithm which finds the

optimal solution of the maximum lateness 1/s#/Lmax. At last section 4 gives
us some conclusions on the algorithms.

2. Algorithms Description and Complexity Time
The dynamic programming algorithms which have been discussed in
this paper; compute values g(n,n,,....n¢,...ne, f) for f = 1, 2, ..., F, these

values represent the minimum total overall contribution to the cost of the
objective function, when ns job(s) from family f (f = 1, 2, ..., F) is(are)
sequenced, the last term f of the recursive equations g, indicates that the last
sequenced job is from family f (f=1, 2, ..., F). For example the value g (2,
1, 1, 2) will indicate that we have three families where two jobs from family
1, one job from family 2 and one job from family 3 are sequenced, the last
term of the value g (2, 1, 1, 2) is equal to two, which indicates that the last
sequenced job is from family 2. Suppose that the current state is
(n;,ny,....n¢,...,ng 1) where ni>1, in that state we see f is equal to 1(f=1),

which means that the last scheduled job is from the first family, this means
that the ni™ job of the first family which can be denoted by (ni, 1) is
scheduled last. The previous state is either (n, —1,n,,...,n;,....,ng 1) Or it is any

one of the states (n, -1,n,,....,n¢,...,ng,h) where h is a family which is distinct
from the first family, that is he{2,3,..,F}(h=2). If the previous state is
(n, =1,n,,...,n¢,...ng 1) , then no set up would be required before the job (ny,
1), so its overall contribution to the objective function will become:

(W —W; =W, —...—W¢) cost(py,;) ..(D)
n n n,+1
where W => w; , W, => w; and W, = > w;_, for all h=1. The cost here is
i=1 i=1 i=1
one of our objective functions which are described in the previous section.
Some of the machine scheduling problems will have unit weights, in
other words these jobs share the same weight (importance), and for this
reason expression 1 will be converted to:

(n—n; —ny —...—ng +1) cost(py,;) ...(2)
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Now to find all the values of g(n;,n,,....n¢,....,ng, f), we must apply

the following recursions:
g(ny, Nyt g, ) = min{g(ng, ny,...n¢ =10, £) + Wy cost(p,, 1),

. ...(3
MG (.11 Lo 1) Wy cst(s; +py, 3} )

M Ny Ny ne

Whel'e Wf :W—Zwi_l—zwi_l_...—zwi _"'_Zwi—l y WO=O fOI‘ f= 1, 2, ey
i=1 i=1 i=1 i=1

F. Initial values are g(1, 0,...1)=W cost(s; + py1), 9(0,1..,2)=W cost(s, + p; )

and ... g(0, 0,...1,F)=W cost(sg + p, ¢). The non existence of some values of

the recursive equations g will lead us to let them be equal to infinity that is
all other initial values are set to infinity, observe that if the recursive
equations are of the maximum type then we must let some of the values
equal to minus infinity, we will explain the non existence of these values in
the next section.
Our aim is to determine:

min{g(ay, Gzoers A, D, 901, Azvees Ap 2y 9(01, Gzsevss G, F)J
Where q is the total number of the jobs of family f (f=1, 2, ..., F).

The time complexity of the dynamic programming algorithms will
depend on the number of the states of the recursive equations which
described in (3), the desired time can be described as follows, for each
family f, we have n; <{0,1,....q¢ {, so for all the F families, we will have

(1+g1) (1+g2) ... (1+qr) states, we observe that for each state the
corresponding recursive equation is solved in a constant time. Now since we
have g1 < ni, g2 < Ny, ..., gr < nNr, SO We deduce that the algorithm will
require O(n1.n2.n3. ... .nf) time, now since  nf < n for all f then we deduce
that the algorithm would be of O(nF) complexity time. All the algorithms
described in this paper will share a fixed time of complexity which is n™ as
mentioned above, so rather than solving the algorithms in different times it
is better to solve them in fixed computation time, hence the fixed time will
lead us to solve these algorithms faster and easier.

3. Dynamic Algorithms for the Objective Functions
This section will be devoted to describe the dynamic programming
algorithms of our objective functions.

3.1. The sum of the completion and weighted completion times

The dynamic programming algorithm for the sum of completion
times problem and the dynamic programming algorithm of the sum of
weighted completion times problem are considered first. Before describing
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the recursive equations we must first rearrange the jobs of each family in
non decreasing order of the processing time [8], the optimal solution of the
1/ s¢ /ZCi problem can be described as:

g(M, NNty g, ) = min{g(ny, ny,.ne =1,...ng, £) + N(py, 1),

mi?{g(nl,nz ----- Nt —L...ng,h)+N(s¢ +p, )3}

(4

where N = n1 - n2- ... - nr + 1, initial values are g(1 0,..,) =N (s, + py1),
9(0,1..,2)=N(s, + po)and ... g(0,0,...1,F)=N(sg + p,g), NOW Since some
of the cases will be impossible, for instance the case g(1, O, ..., 2) means
that the last sequenced job is from the family 2 but we have no any
sequenced job from this family so we set the value of this case to be infinity,
that is the reason of setting all other initial values to infinity.

The recursive equations of Potts [9] were given to solve the sum of
completion times with only two families and these recursions are:
g(n;, Nz, ) =min{g(n; —1,n;,1) + N(py,1), 9(n; =105, 2)+ N(sy + Pp1)}
9(n;, nz,2) =min{g(ny,n; —=1,2) + N(py, ), 9(ny, Ny =L+ N(S; + Py 2)}

We generalize the idea of Potts [9] to more than two families in
other words to F families as mentioned in the recursive equations (4).

Before applying the recursive equations of the sum of the weighted
completion times, the jobs of each family must be sequenced in non
decreasing order of the ratios pit/wis [8]. The optimal sequence of the sum of
weighted completion times 1/ Sf/ZWiCi can be determined by applying the
following recursive equations:
g(M,Ny,.ng e ng, ) = min{g(ny, ny,...ne =1...ng, ) + Wi (py, 1),

min{g (M, Ng,-...Ng —1oo e )+ Wi (S5 + Py, )33

..(5)

n n, ng ne
where W =W > wi = Wiy —.= > Wi —.= > wiy, Wo=0 for f=1,2, ...,
i=1 i=1 i=1

i=1
F. Initial values are g( 0,..)=W (s; + p;;), 9(0,1..,2) =W (s, + p;,) and ...
g(0,0,...,.1,F) =W (sg + p,), as mentioned above all other initial values

are set to infinity.

The recursive equations of Abdullah [1] were given to solve the sum
of completion times with only two families and these recursions are:
g(n;, Nz, ) =min{g(n; —1,n;,1) +W¢ (Pp1), 9(ny =113, 2) + Wy (S; + Ppg )}
9(ny, 3, 2) =min{g(ny,n; —=1,2) + Wy (pp,2), 9(ny, Ny =L+ Wy (S + pp,2)}

We generalize the idea of Abdullah [1] to more than two families in
other words to F families as mentioned in the recursive equations (4).
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Crauwels et el. [4] and Abdul-Razag and Abdullah [2] propose
branch and bund algorithms for the problem 1/ Sf/ZWiCi , also this problem

has been solved by an O(nF) algorithm by Ghosh [5], which is equivalent to
our algorithm, Ahn and Hyun [3], propose a forward dynamic programming
algorithm with job appending that also requires O(nF) time.

3.2. The sum of the square completion and weighted square completion
times
The optimal solution of the sum of the square completion times

problem / st /Zciz, can be determined first by rearranging the jobs

according to non decreasing order of the processing times pif, see [11], and
second by applying the following recursive equations:

...(6)

glip{g(nl,nz ----- Ny =L h)+N(sp +p, )73}
Where N = n; - nz - ... - ng + 1, initial values areg(t, 0,..1)=N (s, + p;1)?,

9(0,1...,2)=N(s, + prp)?and ...g(0,0,...1,F) =N (s + p,¢)?, all other

initial values are set to infinity.
We can get the optimal solution of the sum of the weighted square

completion times problem with equal processing times 1/s¢, pir=ps / Zwici2 :

by rearranging the jobs of each family f according to non increasing order of
wif, and then by applying the following recursions:

g(n,ny,....n¢,...ng, f) =min{g(n,ny,....n; —1,..., nF,f)+Wf(pnff)2,

'gli'f"'{g(nllnz ----- ng —1..., nF!h)+Wf(sf+pnff)Z}}

(7

Where W, =W —iwi,l—iwi,l—...—iwi —...—iwi,l , Wo=0 for f=1,2, ...,
=) =) =) =)

F. Initial values are g(1, 0,..1)=W (s, + py1)?, 9(0,1..,2)=W (s, + p,)and ...
9(0, 0,...1,F) =W (sg + p, ¢)?, all other initial values are set to infinity.
3.3. The sum of the tardy and weighted tardy jobs

Next in this section we will find the optimal solution of the sum of
tardiness jobs with equal due dates 1/ s¢, di = df /ZTi , We see that:

Ti= Max{C,—-d;,0} (definition of T;)
= D T;=) MaqCi-d,0} (bytaking the sum of both sides) ...(8)

= ZTi = Z Max{C; -d,0}  (by assumption)
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We notice from equation (8) that since d is a fixed due date time then
we can rearrange the jobs of each family by non decreasing order of the
processing times pir, the rearrangement will lead us to the best solution, our
aim here is to find the optimal solution, and this can be reached by applying
the following recursive equations:

min{g(n,ny,...,n; —1,...,ng, h) + --9)
h=f
max{g.(n,ny,...ns =L...ng,h)+s¢ + p, ¢ —dy, 01}

where g.(n;,n,,...,n¢ =1...,ng, f) is the completion time of the n¢-1's

job of family f (f=1, 2, ..., F) which can be obtained from the previous state
of the recursive equations that is from the minimum solution of the
preceding state.

To explain how the recursive equations (9) work, let us take the
following example: consider a problem with three families and six jobs with
the following data:

i |1 2 3 45 6

pil4 2 2 4 3 5

d|5 5 7 7 8 8
Table 1

and the families are f1={1, 2}, f.={3, 4} and f:={5, 6}, with set-up times
$1=2, $»=3 and s3=2 of the three families, respectively. Now since p2<pi, o
the order of the jobs of family 1 becomes 2, 1, that is f; must become {2, 1},
while the order of the jobs of the families f> and fz will remain as they are.
To explain the method more precisely let us compute the value of g(2, 1, 0,
1) which is:
9(2,1,0,1)=min{g(1,1,0,1) =2 +max{ge(1,1,0,1)=9+4-5,0},
09(1,1,0,2) =2 +max{ g(1,1,0,2)=9+2+4-5, 0},
g(1, 1,0, 3)=c0+ max{ gc(1, 1, 0, 3)=00+2 + 4-5,0}}=10
where the values of g(1, 1, 0, 1), g(1, 1, 0, 2), g(1, 1, 0, 3), gc(1, 1, O, 1),
gc(1, 1, 0, 2) and gc¢(1, 1, 0, 3) can be obtained from previous stages. The
optimal solution can be found at the last stage of the recursive equations that
is the goal here is to find min{g(2, 2, 2, 1), 9(2, 2, 2, 2), 9(2, 2, 2, 3)}, we
notice that the optimal solution is 52, backtracking which illustrated in
figure 1 shows that the optimal sequence is (2, 1, 3, 4, 5, 6).
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9(1,0,0,1)=4

A

9(2,0,0,1)=3

A

9(2,1,0,2)=9

A

9(2,2,0,2)=19

A

9(2,2,1,3)=33

A

9(2,2,2,3)=52

Figure 1

The 1/ st, pit= pr /Z'I’i problem can be solved first by rearranging

the jobs according to non decreasing order of di r and second by applying the
following recursive equations:
g(ny,ny,....N¢ ..., ng, f)=min{g(n;,ny,....,n; =1....ng, f)+

max{g.(ny,Ny,....ns =L...ng, f)+p¢ —d, ¢,0}

Mg (N Ny LN 1) + ...(10)

max{g.(ny,Ny,....ns =L...,ng, h)+s¢ +pg —d, ¢,04}

The sum of the weighted tardy jobs problem with equal weighted
due dates 1/ sf, wifdif= ws df / ZWiTi will be considered now, here we

have:
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T, = Max{C; - d;,0} (definition of T,)
wT, = w; Max{C; —d;,0} (by multiplying both sides by w;)
D wTi = w Max{C; - d;, 0} (by taking the sum of both sides) ..(11)

ZWiTi = ZMax{wi C; —w;d;, 0} (since w; is a positive weight)
ZWiTi = Z Max{w;C; —wd, 0} (by assumption)

L

Now from the last equation of (11) we notice that since wd is a fixed
weighted due date time for all the families so rearranging the jobs of each
family according to non decreasing order of p/w and then applying the
recursive equations (12) will give us the optimal solution of the last
problem.

(12)

max{g,, (", Nz,....n¢ =1,...ng,N) + 8¢ + p, ¢ —w;dy,0}}

To the best of our knowledge the algorithms which are described in
this section are new ones.

3.4. The maximum lateness

The last problem which is considered in this paper is maximum
lateness with set-up times that is the 1/s#/Lmax problem. This problem can be
solved by applying the following steps: the first step is to rearrange the jobs
according to non decreasing order of their due dates see [8], while the
second step is to find the optimal solution by applying the following
recursive equations:

.(13)

To explain the last recursive equations let us take the following
example: consider a problem which consists of 4 jobs divided into two
families f; and f> where f1={1, 3} and f.={2, 4} with set-up times s1=5>=2 of
both families, the processing times the jobs are: p1=2, p2=1, p3=3 and ps+=8
while the due dates of the jobs are di=5, d»=10, d3=8 and ds=19. By
applying the recursive equations (13) we will obtain the following table of
solutions:
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(N1, no)
(1,0)/(0,1)/(201(0,2)(1,1)|(1,2)|(21) (2 2)
g(ny,nz,1) | -1 00 -1 00 4 12 2 12
g(n,n2,2) | oo -5 00 -5 1 1 2 2

Table 2

From the last column of the above table we see that the optimal
solution is equal to 2, backtracking shows that the best sequence is (1, 3, 2,
4). We Notice that our dynamic algorithm to solve the maximum lateness
problem with set-up times is equivalent to that of Ghosh and Gupta [4],
since it required the same complexity time, that is of order O(n).

4. Conclusions

In this paper we see that some special kinds of machine scheduling
problems can be solved by applying dynamic programming algorithms with
a fixed time, in other words all our dynamic algorithms are solvable in the
same time of complexity. Some of these algorithms represent a
generalization to other algorithms and some of them represent a
modification of other ones while some of them are new ones. You can make
use of this paper to solve other objective functions or to apply it to more
than one machine.
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