
Raf. J. of Comp. & Math’s. , Vol. 6, No. 2, 2009

49

Dynamic Programming Algorithms for Solving Single Machine

Scheduling Problems with a Fixed Complexity Time

Kawa A. Al-Qazilchy

College of Sciences

University of Salahaddin

Received on: 19/08/2007 Accepted on: 17/12/2007
ABSTRACT

 We solve in this paper some machine scheduling problems with

certain conditions; the solution had been made by using dynamic

programming procedures with a fixed time for all the algorithms. Some of

the algorithms described in the paper represent a modification to some

mathematical programming algorithms and some of them are new or a

generalization to others. The optimal solution of all these algorithms will be

done with a fixed complexity time, which may lead us to solve them easier

and faster.
Key words: scheduling, single machine, set-up times, dynamic

programming, fixed complexity.
 ثابتحسابي وقت بالواحدة ماكنةجدولة ال سائلخوارزميات البرمجة الديناميكية لحل م

 يجزلكال هكاو
 جامعة صلاح الدين ، كلية العلوم

 17/12/2007القبول: اريخت 19/8/2007تاريخ الاستلام:
 الملخص

بوجود شروط معينه, تم الحل تناولنا في هذا البحث حل بعض مسائل جدولة الماكنه
الموصوفة في ت. الخوارزمياتباستعمال خوارزميات برمجه ديناميكيه و بوقت ثابت لكل الخوارزميا

. الحل الأمثل لجميع الخوارزميات سوف يتم بوقت ةهذا البحث تمثل خوارزميات جديدة أو تطويري
 الى حلها حلًا أسهل و أسرع. حسابي ثابت و الذي سوف يقودنا

 ثابت.الحسابي الوقت الإعداد، البرمجة الديناميكية، ، ماكنة الواحدةالجدولة، الالكلمات المفتاحية:
1. Introduction

 In the recent years, there has been a large importance in scheduling

problems with set up times. The set up times occur when we have different

families of jobs, as an example of families and set ups; this may happen in

an industrial unit of coloring or painting plastic or wood products. Products

(jobs) with the same colors may represent a one class (family). Cleaning the

machine from a particular color to receive another different product color

will represent a set-up time so the products with the same color will

represent a family, the families of jobs may possibly take place in other

Kawa A. Al-Qazilchy

 50

fields of the life. We derive in this paper some dynamic programming

algorithms to solve single machine scheduling problems with set up time

families with an order of complexity which is fixed for all our dynamic

programming algorithms, in other words with the same complexity

algorithm time which may help us to solve the problems more rapidly.

Before describing the dynamic programming algorithms we will use the

standard classification scheme for scheduling problems (Graham et al. [7])

which is  // , where  indicates the machine environment, in this

paper  will be equal to 1, which indicates that we will have single

machine problems( =1),  describes the job and family characteristics

and the constraints on the jobs, and  defines the objective function to be

minimized. Before describing the algorithms, let {1, 2, …,n} denote the set

of jobs to be processed, also for each family f (f=1, 2, ...,F), we will define

the following parameters: fififi wanddp , which represent the processing

time, the due date and the weight of the ith job of the fth family, respectively.

Also for each family f we will assign a positive specific amount, which is

called the set-up time sf.

 For each job i we will define the following variables:

Ci : is the completion time of job i,

Li = Ci - di : is the lateness of job i,

Ti = max {Li, 0} : is the tardiness of job i.

 Potts and Kovalyov [10] gave a preview of solving some machine

scheduling problems for single machine and more than one machine, by

using dynamic programming algorithms, the rest of this paper will be

organized as follows: First we will give in section 2, a general description of

our algorithm and then we will give the complexity time of the algorithm. In

section 3, we will discuss our dynamic programming algorithms. This

discussion may be made as follows:- We will discuss the dynamic algorithm

for the sum of completion times problem 1/sf/ iC which is a

generalization to that one which is described in [9], moreover in the same

section, we will describe the sum of the weighted completion times problem

1/sf / iiCw and solve it by another dynamic programming algorithm which

will represent a generalization to that which is described in [1], we will use

a dynamic programming algorithm to solve the square completion times

problem 1/sf/
2

iC , in the same section, an algorithm of finding the

optimal solution of the weighted summation of square completion times,

with equal weights 1/ sf, wi f = wf / 2
iiCw , and the weighted sum of square

completion times, with equal processing times 1/ sf, pi f = pf / 2
iiCw will

Dynamic Programming Algorithms for Solving Single Machine Scheduling …

 51

also be considered in this section. In the same section, we will use a

dynamic programming algorithm to solve the sum of tardy jobs with equal

due dates 1/ sf, di f = df / iT , and to solve the sum of tardy jobs with equal

processing times 1/ sf, pi f = pf / iT , also in the same section, we will

describe a dynamic programming algorithm to solve the weighted

summation of tardy jobs with equal weighted due dates 1/ sf, wi f di f = wf df /

 iiTw .Finally the same section, will describe an algorithm which finds the

optimal solution of the maximum lateness 1/sf/Lmax. At last section 4 gives

us some conclusions on the algorithms.

2. Algorithms Description and Complexity Time

 The dynamic programming algorithms which have been discussed in

this paper; compute values),,...,,...,,(21 fnnnng Ff for f = 1, 2, ..., F, these

values represent the minimum total overall contribution to the cost of the

objective function, when nf job(s) from family f (f = 1, 2, …, F) is(are)

sequenced, the last term f of the recursive equations g , indicates that the last

sequenced job is from family f (f = 1, 2, …, F). For example the value g (2,

1, 1, 2) will indicate that we have three families where two jobs from family

1, one job from family 2 and one job from family 3 are sequenced, the last

term of the value g (2, 1, 1, 2) is equal to two, which indicates that the last

sequenced job is from family 2. Suppose that the current state is

)1,,...,,...,,(21 Ff nnnn where n1 1, in that state we see f is equal to 1(f=1),

which means that the last scheduled job is from the first family, this means

that the n1
th job of the first family which can be denoted by (n1, 1) is

scheduled last. The previous state is either)1,,...,,...,,1(21 Ff nnnn − or it is any

one of the states),,...,,...,,1(21 hnnnn Ff− where h is a family which is distinct

from the first family, that is  ).1(...,,3,2  hFh If the previous state is

)1,,...,,...,,1(21 Ff nnnn − , then no set up would be required before the job (n1,

1), so its overall contribution to the objective function will become:

)(cos)...(121 1nF ptWWWW −−−− …(1)

where 
=

=

n

i

iwW

1

, 
=

−=
1

1

11

n

i

iwW and 
+

=

−=

1

1

1

hn

i

ih wW for all 1h . The cost here is

one of our objective functions which are described in the previous section.

 Some of the machine scheduling problems will have unit weights, in

other words these jobs share the same weight (importance), and for this

reason expression 1 will be converted to:

)(cos)1...(121 1nF ptnnnn +−−−− …(2)

Kawa A. Al-Qazilchy

 52

 Now to find all the values of),,...,,...,,(21 fnnnng Ff , we must apply

the following recursions:

)}}(cos),,...,1,...,,({min

),(cos),,...,1,...,,(min{),,...,,...,,(

21

2121

fnffFf
fh

fnfFfFf

f

f

pstWhnnnng

ptWfnnnngfnnnng

++−

+−=



 …(3)

where 
=

−

==

−

=

− −−−−−−=
Ff n

i

i

n

i

i

n

i

i

n

i

if wwwwWW

1

1

11

1

1

1
21

, w0=0 for f = 1, 2, …,

F. Initial values are)(cos)1,..,0,1(1,11 pstWg += ,)(cos)2,..,1,0(2,12 pstWg +=

and …)(cos),1,...,0,0(,1 FF pstWFg += . The non existence of some values of

the recursive equations g will lead us to let them be equal to infinity that is

all other initial values are set to infinity, observe that if the recursive

equations are of the maximum type then we must let some of the values

equal to minus infinity, we will explain the non existence of these values in

the next section.

Our aim is to determine:
  ),,...,,(...,),2,,...,,(),1,,...,,(min 212121 Fqqqgqqqgqqqg FFF

Where fq is the total number of the jobs of family f (f = 1, 2, …, F).

 The time complexity of the dynamic programming algorithms will

depend on the number of the states of the recursive equations which

described in (3), the desired time can be described as follows, for each

family f, we have  ff qn ...,,1,0 , so for all the F families, we will have

(1+q1) (1+q2) … (1+qF) states, we observe that for each state the

corresponding recursive equation is solved in a constant time. Now since we

have q1 < n1, q2 < n2, …, qF < nF, so we deduce that the algorithm will

require O(n1.n2.n3. … .nF) time, now since nf < n for all f then we deduce

that the algorithm would be of O(nF) complexity time. All the algorithms

described in this paper will share a fixed time of complexity which is nF as

mentioned above, so rather than solving the algorithms in different times it

is better to solve them in fixed computation time, hence the fixed time will

lead us to solve these algorithms faster and easier.

3. Dynamic Algorithms for the Objective Functions

 This section will be devoted to describe the dynamic programming

algorithms of our objective functions.

3.1. The sum of the completion and weighted completion times

 The dynamic programming algorithm for the sum of completion

times problem and the dynamic programming algorithm of the sum of

weighted completion times problem are considered first. Before describing

Dynamic Programming Algorithms for Solving Single Machine Scheduling …

 53

the recursive equations we must first rearrange the jobs of each family in

non decreasing order of the processing time [8], the optimal solution of the

1/ sf / iC problem can be described as:

)}}(),,...,1,...,,({min

),(),,...,1,...,,(min{),,...,,...,,(

21

2121

fnfFf
fh

fnFfFf

f

f

psNhnnnng

pNfnnnngfnnnng

++−

+−=



 …(4)

where N = n1 - n2 - … - nF + 1, initial values are)()1,..,0,1(1,11 psNg += ,

)()2,..,1,0(2,12 psNg += and …)(),1,...,0,0(,1 FF psNFg += , now since some

of the cases will be impossible, for instance the case g(1, 0, …, 2) means

that the last sequenced job is from the family 2 but we have no any

sequenced job from this family so we set the value of this case to be infinity,

that is the reason of setting all other initial values to infinity.

 The recursive equations of Potts [9] were given to solve the sum of

completion times with only two families and these recursions are:

)}()2,,1(),()1,,1(min{)1,,(112112121 11 nn psNnngpNnngnng ++−+−=

)}()1,1,(),()2,1,(min{)2,,(222122121 22 nn psNnngpNnngnng ++−+−=

 We generalize the idea of Potts [9] to more than two families in

other words to F families as mentioned in the recursive equations (4).

 Before applying the recursive equations of the sum of the weighted

completion times, the jobs of each family must be sequenced in non

decreasing order of the ratios pif/wif [8]. The optimal sequence of the sum of

weighted completion times 1/ sf / iiCw can be determined by applying the

following recursive equations:

)}}(),,...,1,...,,({min

),(),,...,1,...,,(min{),,...,,...,,(

21

2121

fnffFf
fh

fnfFfFf

f

f

psWhnnnng

pWfnnnngfnnnng

++−

+−=



 …(5)

where 
=

−

==

−

=

− −−−−−−=
Ff n

i

i

n

i

i

n

i

i

n

i

if wwwwWW

1

1

11

1

1

1
21

, w0=0 for f = 1, 2, …,

F. Initial values are)()1,..,0,1(111 psWg += ,)()2,..,1,0(212 psWg += and …

)(),1,...,0,0(1FF psWFg += , as mentioned above all other initial values

are set to infinity.

 The recursive equations of Abdullah [1] were given to solve the sum

of completion times with only two families and these recursions are:
)}()2,,1(),()1,,1(min{)1,,(112112121 11 nfnf psWnngpWnngnng ++−+−=

)}()1,1,(),()2,1,(min{)2,,(222122121 22 nfnf psWnngpWnngnng ++−+−=

 We generalize the idea of Abdullah [1] to more than two families in

other words to F families as mentioned in the recursive equations (4).

Kawa A. Al-Qazilchy

 54

 Crauwels et el. [4] and Abdul-Razaq and Abdullah [2] propose

branch and bund algorithms for the problem 1/ sf / iiCw , also this problem

has been solved by an O(nF) algorithm by Ghosh [5], which is equivalent to

our algorithm, Ahn and Hyun [3], propose a forward dynamic programming

algorithm with job appending that also requires O(nF) time.

3.2. The sum of the square completion and weighted square completion

 times

 The optimal solution of the sum of the square completion times

problem / sf /
2

iC , can be determined first by rearranging the jobs

according to non decreasing order of the processing times pif, see [11], and

second by applying the following recursive equations:

}})(),,...,1,...,,({min

,)(),,...,1,...,,(min{),,...,,...,,(

2
21

2
2121

fnfFf
fh

fnFfFf

f

f

psNhnnnng

pNfnnnngfnnnng

++−

+−=



 …(6)

Where N = n1 - n2 - … - nF + 1, initial values are 2
1,11)()1,..,0,1(psNg += ,

2
2,12)()2,..,1,0(psNg += and … 2

,1)(),1,...,0,0(FF psNFg += , all other

initial values are set to infinity.

 We can get the optimal solution of the sum of the weighted square

completion times problem with equal processing times 1/sf, pif=pf / 2
iiCw ,

by rearranging the jobs of each family f according to non increasing order of

wif, and then by applying the following recursions:

}})(),,...,1,...,,({min

,)(),,...,1,...,,(min{),,...,,...,,(

2
21

2
2121

fnffFf
fh

fnfFfFf

f

f

psWhnnnng

pWfnnnngfnnnng

++−

+−=



 …(7)

Where 
=

−

==

−

=

− −−−−−−=
Ff n

i

i

n

i

i

n

i

i

n

i

if wwwwWW

1

1

11

1

1

1
21

, w0=0 for f = 1, 2, …,

F. Initial values are 2
1,11)()1,..,0,1(psWg += , 2

2,12)()2,..,1,0(psWg += and …

2
,1)(),1,...,0,0(FF psWFg += , all other initial values are set to infinity.

3.3. The sum of the tardy and weighted tardy jobs

 Next in this section we will find the optimal solution of the sum of

tardiness jobs with equal due dates 1/ sf, di f = df / iT , we see that:

)(}0,{

)(}0,{

)(}0,{

assumptionbydCMaxT

sidesbothofsumthetakingbydCMaxT

TofdefinitiondCMaxT

ii

iii

iiii




−=

−=

−=

 …(8)

Dynamic Programming Algorithms for Solving Single Machine Scheduling …

 55

 We notice from equation (8) that since d is a fixed due date time then

we can rearrange the jobs of each family by non decreasing order of the

processing times pif, the rearrangement will lead us to the best solution, our

aim here is to find the optimal solution, and this can be reached by applying

the following recursive equations:

}}0,),,...,1,...,,(max{

),,...,1,...,,({min

}0,),,...,1,...,,(max{

),,...,1,...,,(min{),,...,,...,,(

21

21

21

2121

ffnfFfc

Ff
fh

ffnFfc

FfFf

dpshnnnng

hnnnng

dpfnnnng

fnnnngfnnnng

f

f

−++−

+−

−+−

+−=



…(9)

 where),,...,1,...,,(21 fnnnng Ffc − is the completion time of the nf-1's

job of family f (f=1, 2, …, F) which can be obtained from the previous state

of the recursive equations that is from the minimum solution of the

preceding state.

 To explain how the recursive equations (9) work, let us take the

following example: consider a problem with three families and six jobs with

the following data:

i 1 2 3 4 5 6

pi 4 2 2 4 3 5

di 5 5 7 7 8 8

Table 1

and the families are f1={1, 2}, f2={3, 4} and f3={5, 6}, with set-up times

s1=2, s2=3 and s3=2 of the three families, respectively. Now since p2<p1, so

the order of the jobs of family 1 becomes 2, 1, that is f1 must become {2, 1},

while the order of the jobs of the families f2 and f3 will remain as they are.

To explain the method more precisely let us compute the value of g(2, 1, 0,

1) which is:

g(2, 1, 0, 1) = min{ g(1, 1, 0, 1) = 2 + max{ gc(1, 1, 0, 1) = 9 + 4 – 5 , 0},

 g(1, 1, 0, 2) = 2 + max{ gc(1, 1, 0, 2) = 9 + 2 + 4 – 5, 0},

 g(1, 1, 0, 3)=+ max{ gc(1, 1, 0, 3)=+2 + 4–5,0}}=10

where the values of g(1, 1, 0, 1), g(1, 1, 0, 2), g(1, 1, 0, 3), gc(1, 1, 0, 1),

gc(1, 1, 0, 2) and gc(1, 1, 0, 3) can be obtained from previous stages. The

optimal solution can be found at the last stage of the recursive equations that

is the goal here is to find min{g(2, 2, 2, 1), g(2, 2, 2, 2), g(2, 2, 2, 3)}, we

notice that the optimal solution is 52, backtracking which illustrated in

figure 1 shows that the optimal sequence is (2, 1, 3, 4, 5, 6).

Kawa A. Al-Qazilchy

 56

Figure 1

 The 1/ sf, pi f = pf / iT problem can be solved first by rearranging

the jobs according to non decreasing order of di f and second by applying the

following recursive equations:

}}0,),,...,1,...,,(max{

),,...,1,...,,({min

}0,),,...,1,...,,(max{

),,...,1,...,,(min{),,...,,...,,(

21

21

21

2121

fnffFfc

Ff
fh

fnfFfc

FfFf

f

f

dpshnnnng

hnnnng

dpfnnnng

fnnnngfnnnng

−++−

+−

−+−

+−=



…(10)

 The sum of the weighted tardy jobs problem with equal weighted

due dates 1/ sf, wi f di f = wf df /  iiTw will be considered now, here we

have:

g(2,0,0,1)=3

g(2,1,0,2)=9

g(2,2,0,2)=19

g(2,2,1,3)=33

g(2,2,2,3)=52

g(1,0,0,1)=4

Dynamic Programming Algorithms for Solving Single Machine Scheduling …

 57

)(}0,{

)(sin}0,{

)(}0,{

)(}0,{

)(}0,{

assumptionbydwCwMaxTw

weightpositiveaiswcedwCwMaxTw

sidesbothofsumthetakingbydCMaxwTw

wbysidesbothgmultiplyinbydCMaxwTw

TofdefinitiondCMaxT

iiii

iiiiiii

iiiii

iiiiii

iiii





−=

−=

−=

−=

−=

 …(11)

 Now from the last equation of (11) we notice that since wd is a fixed

weighted due date time for all the families so rearranging the jobs of each

family according to non decreasing order of p/w and then applying the

recursive equations (12) will give us the optimal solution of the last

problem.

}}0,),,...,1,...,,(max{

),,...,1,...,,({min

}0,),,...,1,...,,(max{

),,...,1,...,,(min{),,...,,...,,(

21

21

21

2121

fffnfFfw

Ff
fh

fffnFfw

FfFf

dwpshnnnng

hnnnng

dwpfnnnng

fnnnngfnnnng

f

f

−++−

+−

−+−

+−=



...(12)

 To the best of our knowledge the algorithms which are described in

this section are new ones.

3.4. The maximum lateness

 The last problem which is considered in this paper is maximum

lateness with set-up times that is the 1/sf/Lmax problem. This problem can be

solved by applying the following steps: the first step is to rearrange the jobs

according to non decreasing order of their due dates see [8], while the

second step is to find the optimal solution by applying the following

recursive equations:

}}}0,)(),,...,1,...,2,1({max{min

},0,),,...,1,...,2,1(min{max{),,...,,...,2,1(

f
f

ndf
f

npfsNhFnfnnng
fh

f
f

ndf
f

npNfFnfnnngfFnfnnng

−++−


−+−=

 ...(13)

 To explain the last recursive equations let us take the following

example: consider a problem which consists of 4 jobs divided into two

families f1 and f2 where f1={1, 3} and f2={2, 4} with set-up times s1=s2=2 of

both families, the processing times the jobs are: p1=2, p2=1, p3=3 and p4=8

while the due dates of the jobs are d1=5, d2=10, d3=8 and d4=19. By

applying the recursive equations (13) we will obtain the following table of

solutions:

Kawa A. Al-Qazilchy

 58

 (n1, n2)

 (1, 0) (0, 1) (2, 0) (0, 2) (1, 1) (1, 2) (2, 1) (2, 2)

g(n1,n2,1) -1  -1  4 12 2 12

g(n1,n2,2)  -5  -5 1 1 2 2

Table 2

 From the last column of the above table we see that the optimal

solution is equal to 2, backtracking shows that the best sequence is (1, 3, 2,

4). We Notice that our dynamic algorithm to solve the maximum lateness

problem with set-up times is equivalent to that of Ghosh and Gupta [4],

since it required the same complexity time, that is of order O(nF).

4. Conclusions

 In this paper we see that some special kinds of machine scheduling

problems can be solved by applying dynamic programming algorithms with

a fixed time, in other words all our dynamic algorithms are solvable in the

same time of complexity. Some of these algorithms represent a

generalization to other algorithms and some of them represent a

modification of other ones while some of them are new ones. You can make

use of this paper to solve other objective functions or to apply it to more

than one machine.

Dynamic Programming Algorithms for Solving Single Machine Scheduling …

 59

REFERENCES

[1] Abdullah, K.A., (2005), Scheduling Two Job Classes on a Single

 Machine to Minimize The Total Weighted Completion Time, Al-

 Mustansiriya Journal Science 16, 3, 37-46.

[2] Abdul-Razaq, T.S, and Abdullah K.A., (2000), Scheduling Job

 Classes on Single Machine with Batches to Minimize The Sum of

 The Weighted Completion Times, Mustansiriya Journal Science, 11,

 253-274.

[3] Ahn, B.H. and Hyun, J.H., (1990), Single Facility Multi-Class Job

 Scheduling, Computers and Operations Research, 17, 265-272.

[4] Crauwels, H.A.J., Hariri, A.M.A., Potts, C.N., and Van

 Wassenhove, L.N., (1998), Branch and Bound Algorithms for

 Single Machine Scheduling with Batch Set-up Times to Minimize

 Total Weighted Completion Time, Annals of Operations Research ,

 83, 59-76.

[5] Ghosh, J.B., (1994), Batch Scheduling to Minimize Total

 Completion Time, Operations Research Letters, 16, 271-275.

[6] Ghosh, J.B. and Gupta, J.N.D., (1997), Batch Scheduling to

 Minimize Maximum Lateness, Operations Research Letters, 21, 77-

 80.

[7] Graham, R.L. Lawler, E.L. Lenstra, J.K. and Rinnooy Kan, A.H.G.,

 (1979), Optimization and approximation in deterministic machine

 scheduling: A survey, Annals of Discrete Mathematics 5, 287-326.

[8] Monma, C.L. and Potts, C.N., (1989), On The Complexity of

 Scheduling With Batch Set-up Times, Operations Research, 37, 798-

 804.

[9] Potts, C.N., (1991), Scheduling Two Job Classes on a Single

 Machine, Computers Operations Research 18, 5, 411-415.

[10] Potts, C.N. and Kovalyov, M.Y., (2000), Invited Review Scheduling

 with Batching: review, European Journal of Operational Research

 120, 228-249.

[11] Townsend, W., (1978), The single machine problem with quadratic

 penalty function of completion times: A Branch-and-Bound solution,

 Management Science, 24, 5, 530-534.

