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ABSTRACT 

 We solve in this paper some machine scheduling problems with 

certain conditions; the solution had been made by using dynamic 

programming procedures with a fixed time for all the algorithms. Some of 

the algorithms described in the paper represent a modification to some 

mathematical programming algorithms and some of them are new or a 

generalization to others. The optimal solution of all these algorithms will be 

done with a fixed complexity time, which may lead us to solve them easier 

and faster. 
Key words: scheduling, single machine, set-up times, dynamic 

programming, fixed complexity. 
 ثابتحسابي وقت بالواحدة  ماكنةجدولة ال سائلخوارزميات البرمجة الديناميكية لحل م

 يجزلكال هكاو 
 جامعة صلاح الدين ، كلية العلوم

 17/12/2007القبول:   اريخت                              19/8/2007تاريخ الاستلام: 
 الملخص

بوجود شروط معينه, تم الحل  تناولنا في هذا البحث حل بعض مسائل جدولة الماكنه  
الموصوفة في  ت. الخوارزمياتباستعمال خوارزميات برمجه ديناميكيه و بوقت ثابت لكل الخوارزميا

.  الحل الأمثل لجميع الخوارزميات سوف يتم بوقت ةهذا البحث تمثل خوارزميات جديدة أو تطويري
 الى حلها حلًا أسهل و أسرع. حسابي ثابت و الذي سوف يقودنا 

 ثابت.الحسابي الوقت الإعداد، البرمجة الديناميكية، ، ماكنة الواحدةالجدولة، الالكلمات المفتاحية: 
1. Introduction 

 In the recent years, there has been a large importance in scheduling 

problems with set up times. The set up times occur when we have different 

families of jobs, as an example of families and set ups; this may happen in 

an industrial unit of coloring or painting plastic or wood products. Products 

(jobs) with the same colors may represent a one class (family). Cleaning the 

machine from a particular color to receive another different product color 

will represent a set-up time so the products with the same color will 

represent a family, the families of jobs may possibly take place in other 



Kawa A. Al-Qazilchy 
 

 

 50 

fields of the life. We derive in this paper some dynamic programming 

algorithms to solve single machine scheduling problems with set up time 

families with an order of complexity which is fixed for all our dynamic 

programming algorithms, in other words with the same complexity 

algorithm time which may help us to solve the problems more rapidly. 

Before describing the dynamic programming algorithms we will use the 

standard classification scheme for scheduling problems (Graham et al. [7]) 

which is  // , where   indicates the machine environment, in this 

paper   will be equal to 1, which indicates that we will have single 

machine problems( =1),   describes the job and family characteristics 

and the constraints on the jobs, and   defines the objective function to be 

minimized. Before describing the algorithms, let {1, 2, …,n} denote the set 

of  jobs to be processed, also for each family f (f=1, 2, ...,F), we will define 

the following parameters: fififi wanddp ,  which represent the processing 

time, the due date and the weight of the ith job of the fth family, respectively. 

Also for each family f we will assign a positive specific amount, which is 

called the set-up time sf.  

 For each job i we will define the following variables: 
 

Ci                                 : is the completion time of job i, 

Li = Ci - di                  : is the lateness of job i, 

Ti = max {Li, 0}  : is the tardiness of job i. 
   

 Potts and Kovalyov [10] gave a preview of solving some machine 

scheduling problems for single machine and more than one machine, by 

using dynamic programming algorithms, the rest of this paper will be 

organized as follows: First we will give in section 2, a general description of 

our algorithm and then we will give the complexity time of the algorithm. In 

section 3, we will discuss our dynamic programming algorithms. This 

discussion may be made as follows:- We will discuss the dynamic algorithm 

for the sum of completion times problem 1/sf/ iC  which is a 

generalization to that one which is described in [9], moreover in the same 

section, we will describe the sum of the weighted completion times problem 

1/sf / iiCw and solve it by another dynamic programming algorithm which 

will represent a generalization to that which is described in [1], we will use 

a dynamic programming algorithm to solve the square completion times 

problem 1/sf/
2

iC , in the same section, an algorithm of finding the 

optimal solution of the weighted summation of square completion times, 

with equal weights 1/ sf, wi f = wf / 2
iiCw , and the weighted sum of square 

completion times, with equal processing times 1/ sf, pi f  = pf / 2
iiCw will 
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also be considered in this section. In the same section, we will use a 

dynamic programming algorithm to solve the sum of tardy jobs with equal 

due dates 1/ sf, di f  = df / iT , and to solve the sum of tardy jobs with equal 

processing times 1/ sf, pi f = pf / iT , also in the same section, we will 

describe a dynamic programming algorithm to solve the weighted 

summation  of tardy jobs with equal weighted due dates 1/ sf, wi f di f = wf df / 

 iiTw .Finally the same section, will describe an algorithm which finds the 

optimal solution of the maximum lateness 1/sf/Lmax. At last section 4 gives 

us some conclusions on the algorithms.                                           

2. Algorithms Description and Complexity Time 

 The dynamic programming algorithms which have been discussed in 

this paper; compute values ),,...,,...,,( 21 fnnnng Ff for f = 1, 2, ..., F, these 

values represent the minimum total overall contribution to the cost of the 

objective function, when nf job(s) from family f (f = 1, 2, …, F) is(are) 

sequenced, the last term f of the recursive equations g , indicates that the last 

sequenced job is from family f (f = 1, 2, …, F). For example the value g (2, 

1, 1, 2) will indicate that we have three families where two jobs from family 

1, one job from family 2 and one job from family 3 are sequenced, the last 

term of the value g (2, 1, 1, 2) is equal to two, which indicates that the last 

sequenced job is from family 2.   Suppose that the current state is 

)1,,...,,...,,( 21 Ff nnnn where n1 1, in that state we see f is equal to 1(f=1), 

which means that the last scheduled job is from the first family, this means 

that the n1
th job of the first family which can be denoted by (n1, 1) is 

scheduled last. The previous state is either )1,,...,,...,,1( 21 Ff nnnn − or it is any 

one of the states ),,...,,...,,1( 21 hnnnn Ff− where h is a family which is distinct 

from the first family, that is   ).1(...,,3,2  hFh  If the previous state is 

)1,,...,,...,,1( 21 Ff nnnn − , then no set up would be required before the job (n1, 

1), so its overall contribution to the objective function will become: 
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one of our objective functions which are described in the previous section.     

 Some of the machine scheduling problems will have unit weights, in 

other words these jobs share the same weight (importance), and for this 

reason expression 1 will be converted to: 

)(cos)1...( 121 1nF ptnnnn +−−−−      …(2) 
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 Now to find all the values of ),,...,,...,,( 21 fnnnng Ff , we must apply 

the following recursions: 
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F. Initial values are )(cos)1,..,0,1( 1,11 pstWg += , )(cos)2,..,1,0( 2,12 pstWg +=  

and … )(cos),1,...,0,0( ,1 FF pstWFg += . The non existence of some values of 

the recursive equations g will lead us to let them be equal to infinity that is 

all other initial values are set to infinity, observe that if the recursive 

equations are of the maximum type then we must let some of the values 

equal to minus infinity, we will explain the non existence of these values in 

the next section.  

Our aim is to determine: 
  ),,...,,(...,),2,,...,,(),1,,...,,(min 212121 Fqqqgqqqgqqqg FFF  

Where fq is the total number of the jobs of family f (f = 1, 2, …, F). 

 The time complexity of the dynamic programming algorithms will 

depend on the number of the states of the recursive equations which 

described in (3), the desired time can be described as follows, for each 

family f, we have  ff qn ...,,1,0 , so for all the F families, we will have   

(1+q1) (1+q2) … (1+qF) states, we observe that for each state the 

corresponding recursive equation is solved in a constant time. Now since we 

have q1 < n1, q2 < n2, …, qF < nF, so we deduce that the algorithm will 

require O(n1.n2.n3. … .nF) time, now since     nf < n for all f then we deduce 

that the algorithm would be of O(nF) complexity time. All the algorithms 

described in this paper will share a fixed time of complexity which is nF as 

mentioned above, so rather than solving the algorithms in different times it 

is better to solve them in fixed computation time, hence the fixed time will 

lead us to solve these algorithms faster and easier.       

3. Dynamic Algorithms for the Objective Functions 

 This section will be devoted to describe the dynamic programming 

algorithms of our objective functions.  

3.1. The sum of the completion and weighted completion times 

 The dynamic programming algorithm for the sum of completion 

times problem and the dynamic programming algorithm of the sum of 

weighted completion times problem are considered first. Before describing 
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the recursive equations we must first rearrange the jobs of each family in 

non decreasing order of the processing time [8], the optimal solution of the 

1/ sf / iC problem can be described as: 
 

)}}(),,...,1,...,,({min

),(),,...,1,...,,(min{),,...,,...,,(

21

2121

fnfFf
fh

fnFfFf

f

f

psNhnnnng

pNfnnnngfnnnng

++−

+−=



 …(4) 

 

where N = n1 - n2 - … - nF + 1, initial values are )()1,..,0,1( 1,11 psNg += , 

)()2,..,1,0( 2,12 psNg += and … )(),1,...,0,0( ,1 FF psNFg += , now since some 

of the cases will be impossible, for instance the case g(1, 0, …, 2) means 

that the last sequenced job is from the family 2 but we have no any 

sequenced job from this family so we set the value of this case to be infinity, 

that is the reason of setting  all other initial values to infinity. 

 The recursive equations of Potts [9] were given to solve the sum of 

completion times with only two families and these recursions are: 
 

)}()2,,1(),()1,,1(min{)1,,( 112112121 11 nn psNnngpNnngnng ++−+−=  

)}()1,1,(),()2,1,(min{)2,,( 222122121 22 nn psNnngpNnngnng ++−+−=  
 

 We generalize the idea of Potts [9] to more than two families in 

other words to F families as mentioned in the recursive equations (4). 

 Before applying the recursive equations of the sum of the weighted 

completion times, the jobs of each family must be sequenced in non 

decreasing order of the ratios pif/wif [8]. The optimal sequence of the sum of 

weighted completion times 1/ sf / iiCw can be determined by applying the 

following recursive equations: 
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F. Initial values are )()1,..,0,1( 111 psWg += , )()2,..,1,0( 212 psWg +=  and … 

)(),1,...,0,0( 1FF psWFg += , as mentioned above all other initial values 

are set to infinity. 

 The recursive equations of Abdullah [1] were given to solve the sum 

of completion times with only two families and these recursions are: 
)}()2,,1(),()1,,1(min{)1,,( 112112121 11 nfnf psWnngpWnngnng ++−+−=  

)}()1,1,(),()2,1,(min{)2,,( 222122121 22 nfnf psWnngpWnngnng ++−+−=  

 We generalize the idea of Abdullah [1] to more than two families in 

other words to F families as mentioned in the recursive equations (4). 
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 Crauwels et el. [4] and Abdul-Razaq and Abdullah [2] propose 

branch and bund algorithms for the problem 1/ sf / iiCw , also this problem 

has been solved by an O(nF) algorithm by Ghosh [5], which is equivalent to 

our algorithm, Ahn and Hyun [3], propose a forward dynamic programming 

algorithm with job appending that also requires O(nF) time.   

3.2. The sum of the square completion and weighted square completion  

        times 

 The optimal solution of the sum of the square completion times 

problem  / sf /
2

iC , can be determined first by rearranging the jobs 

according to non decreasing order of the processing times pif, see [11], and 

second by applying the following recursive equations: 
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Where N = n1 - n2 - … - nF + 1, initial values are 2
1,11 )()1,..,0,1( psNg += , 

2
2,12 )()2,..,1,0( psNg += and … 2

,1 )(),1,...,0,0( FF psNFg += , all other 

initial values are set to infinity. 

 We can get the optimal solution of the sum of the weighted square 

completion times problem with equal processing times 1/sf, pif=pf / 2
iiCw , 

by rearranging the jobs of each family f according to non increasing order of 

wif, and then by applying the following recursions:        
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2
,1 )(),1,...,0,0( FF psWFg += , all other initial values are set to infinity. 

3.3. The sum of the tardy and weighted tardy jobs 

 Next in this section we will find the optimal solution of the sum of 

tardiness jobs with equal due dates 1/ sf, di f = df / iT , we see that: 
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 We notice from equation (8) that since d is a fixed due date time then 

we can rearrange the jobs of each family by non decreasing order of the 

processing times pif, the rearrangement will lead us to the best solution, our 

aim here is to find the optimal solution, and this can be reached by applying 

the following recursive equations: 
       

}}0,),,...,1,...,,(max{

),,...,1,...,,({min

}0,),,...,1,...,,(max{

),,...,1,...,,(min{),,...,,...,,(

21

21

21
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f

f

−++−

+−

−+−

+−=



…(9) 

 

 where ),,...,1,...,,( 21 fnnnng Ffc −  is the completion time of the nf-1's 

job of family f (f=1, 2, …, F) which can be obtained from the previous state 

of the recursive equations that is from the minimum solution of the 

preceding state.    

 To explain how the recursive equations (9) work, let us take the 

following example: consider a problem with three families and six jobs with 

the following data: 

 

i 1 2 3 4 5 6 

pi 4 2 2 4 3 5 

di 5 5 7 7 8 8 

Table 1 
 

and the families are f1={1, 2}, f2={3, 4} and f3={5, 6}, with set-up times 

s1=2, s2=3 and s3=2 of the three families, respectively. Now since p2<p1, so 

the order of the jobs of family 1 becomes 2, 1, that is f1 must become {2, 1}, 

while the order of the jobs of the families f2 and f3 will remain as they are. 

To explain the method more precisely let us compute the value of g(2, 1, 0, 

1) which is: 
 

g(2, 1, 0, 1) = min{ g(1, 1, 0, 1) = 2 + max{ gc(1, 1, 0, 1) = 9 + 4 – 5 , 0}, 

                               g(1, 1, 0, 2) = 2 + max{  gc(1, 1, 0, 2) = 9 + 2 + 4 – 5, 0}, 

                               g(1, 1, 0, 3)=+ max{ gc(1, 1, 0, 3)=+2 + 4–5,0}}=10  
  

where the values of  g(1, 1, 0, 1), g(1, 1, 0, 2), g(1, 1, 0, 3), gc(1, 1, 0, 1), 

gc(1, 1, 0, 2) and gc(1, 1, 0, 3) can be obtained from previous stages. The 

optimal solution can be found at the last stage of the recursive equations that 

is the goal here is to find min{g(2, 2, 2, 1), g(2, 2, 2, 2), g(2, 2, 2, 3)}, we 

notice that the optimal solution is 52, backtracking which illustrated in 

figure 1 shows that the optimal sequence is (2, 1, 3, 4, 5, 6).  
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Figure 1 
   

 The  1/ sf, pi f = pf / iT  problem can be solved first by rearranging 

the jobs according to non decreasing order of di f and second by applying the 

following recursive equations: 
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−++−

+−
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+−=



…(10) 

 The sum of the weighted tardy jobs problem with equal weighted 

due dates    1/ sf, wi f di f = wf df /  iiTw will be considered now, here we 

have: 

g(2,0,0,1)=3 

g(2,1,0,2)=9 

g(2,2,0,2)=19 

g(2,2,1,3)=33 

g(2,2,2,3)=52 

g(1,0,0,1)=4 
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 Now from the last equation of (11) we notice that since wd is a fixed 

weighted due date time for all the families so rearranging the jobs of each 

family according to non decreasing order of p/w and then applying the 

recursive equations (12) will give us the optimal solution of the last 

problem. 
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 To the best of our knowledge the algorithms which are described in 

this section are new ones. 

3.4. The maximum lateness  

 The last problem which is considered in this paper is maximum 

lateness with set-up times that is the 1/sf/Lmax problem. This problem can be 

solved by applying the following steps: the first step is to rearrange the jobs 

according to non decreasing order of their due dates see [8], while the 

second step is to find the optimal solution by applying the following 

recursive equations: 
 

}}}0,)(),,...,1,...,2,1({max{min

},0,),,...,1,...,2,1(min{max{),,...,,...,2,1(

f
f

ndf
f

npfsNhFnfnnng
fh

f
f

ndf
f

npNfFnfnnngfFnfnnng

−++−


−+−=

  ...(13) 

 

 To explain the last recursive equations let us take the following 

example: consider a problem which consists of 4 jobs divided into two 

families f1 and f2 where f1={1, 3} and f2={2, 4} with set-up times s1=s2=2 of 

both families, the processing times the jobs are: p1=2, p2=1, p3=3 and p4=8 

while the due dates of the jobs are d1=5, d2=10, d3=8 and d4=19. By 

applying the recursive equations (13) we will obtain the following table of 

solutions: 
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                                                                      (n1, n2) 

 (1, 0) (0, 1) (2, 0) (0, 2) (1, 1) (1, 2) (2, 1) (2, 2) 

g(n1,n2,1) -1   -1   4 12 2 12 

g(n1,n2,2)   -5   -5 1 1 2 2 

Table 2 
   

 From the last column of the above table we see that the optimal 

solution is equal to 2, backtracking shows that the best sequence is (1, 3, 2, 

4). We Notice that our dynamic algorithm to solve the maximum lateness 

problem with set-up times is equivalent to that of Ghosh and Gupta [4], 

since it required the same complexity time, that is of order O(nF).         

4. Conclusions 

 In this paper we see that some special kinds of machine scheduling 

problems can be solved by applying dynamic programming algorithms with 

a fixed time, in other words all our dynamic algorithms are solvable in the 

same time of complexity. Some of these algorithms represent a 

generalization to other algorithms and some of them represent a 

modification of other ones while some of them are new ones. You can make 

use of this paper to solve other objective functions or to apply it to more 

than one machine.      
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