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ABSTRACT

We consider a class of invariant Hyperbolic scaling of a strictly
convex quadratic function, to extend the family of the conjugate gradient
methods for solving unconstrained minimization problems. An algorithm is
derived and evaluated numerically. The results indicate that, in general, the
new algorithm is superior to the classical standard CG-algorithm.
Keywords: A Hyperbolic Rational Model, Conjugate gradient methods.
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1. Introduction
A more general model than the quadratic one is proposed in this
paper as a basis for a CG algorithm. If g(x) is a quadratic function, then a
function f is defined as a non-linear scaling of q(x) if the following
condition holds :
f=F(Q(X)),dF/[dg=F >o0andg(X)>0  ................... (1)
where x* is the minimizer of q(x) with respect to x [15].
The following properties are immediately derived from the above
condition:
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i) Every contour line to q(x) is a contour line of f .
i) If x* is a minimzer of q(x), then it is a minimizer of f.
iii) That x* is a global minimum of q(x) does not necessarily mean
that it is a global minimum of f [7].
Various authors have puplished related work in the area:
A conjugate method which minimizers the function
f(x) = (q(x))? , and x € R" in at most steps has been described by Fried
[11].Another special case, namely 1 )
F(a(x)) = sa(x) + &0 (x)
Where €1 and &2 are scalars, has been investigated by Boland and
Kowalik [7].
Another model has been developed by Tassopoulos and Storey [16]
as follows: F(q(x) = e1q(x) + 1/e2q(x): e2>0
AL-Assady in [3] developed another model as follows: (F(q(x)) = In (q(x))
Al-Bayati [1] has been developed a new rational models which is defined as
follows: F(q(x)) = &1 q(X)/1-e2 q(x), &, < 0.
Also Al-Bayati, [4] developed extended CG algorithm, which is
based on a general logarithmic model
F(q(x) = log(q(x)-1) ,&>0
Al-Assady and Huda [2] described their ECG algorithm which is
based on the natural log function for the rational g(x) function

F@) = log| & Y% a0 41, £2< 0

Al-Assady and Al-Taai [5]described there ECG algorithm which is
based on the natural log function for the rational g(x) function

F(a(x)) = sinh(e q(x))
And Al-Assady and Al-Taai [6] developed a new rational model which is
defined as follows:

F(q(x)) = sin(e q(x))

2. The New Non Quadratic Model:
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In this paper, a new sine hyperbolic model is investigated and tested
on a set of standard test function, assumed that condition (1) holds. An
extended conjugate gradient algorithm is developed which is based on this
new model which scales q(x) by the natural sinh function for the rational

q(x) functions.
F(q(X) =sinh (e1qi(X)+1 /e2q2)  ceeeverennnn Q)

We first observe that q(x) and F(q(x)) given by (2) have identical
contours, though with different function values, and they have the same

unique minimum point denoted by x".
2.1 The Algorithm :
Given xo € R"an initial estimate of the minimizer x".
Step (1): set do = - go.
Step (2) : Fori= 1,2, ....
Compute Xi = Xi-1 + Ai-1 di-1
Where i1 is the optimal step size obtained by the line search
procedure.

Step (3) : compute

[T o1, o (T)-2]
_ fo+f +1
P = Hfi+\/ﬁ}z+l[ln[fl+ £ 1}_82}2
i f o+ f e _

Where the derivation of scaling pi will be presented below.
Step (4) : calculate the new direction

di=-gi+ S di.

where S, is defined by different formulae according to variation
and it is expressed as follows:
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Bi=Pi (l9ill? / |lgi-1|> ){modified by Fletcher and Reeves, 1964
F/R,[10]}

l:ﬂi = giT (p.g. - gi_l)/dinl(pi g.- gi_l)} {modified by Hestenes an
Stiefle 1952, H/S ,[12]}

B = giT(Ioi gi - gifl)/d:_lgifl{modified by Polak and Ribiera
1969 ,[13]}

Bi=ri|g.

Conjugate gradient methods are usually implemented by restarts in
order to avoid an accumulation of errors affecting the search directions.

It is therefore generally agreed that restarting is very helpful in
practices, so we have used the following restarting criterion in our practical
investigations. If the new direction satisfies:

“1d7 g, {modified by Dixon 1972[9]}

dl g; Z‘0'89i2

Then a restart is also initiated. This new direction is sufficiently
downhill. [14].

2.2 The Derivation of p, for the New Model:
The implementation of the extended CG method has been performed
for general function F(q(x) of the form of equation(2).

The unknown quantities ©; were expressed in terms of available
quantities of the algorithm.

sinh £4(9+1 : :
The new £,q(x) ) Model can now be written as:

£q(x) +1]
£,4(X)
Solving equation (2) for q

£9(x) +1J
£,9(X)

f(x)= F(q(x):sinh(

Sinh f(x) = (
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{ X)++ f(x J e ;X()x;l =
%2 In[f (X) ++/ F(X)° +1]— &

and using the expression for p; = f 'i_l/ f ’i

cosh(&,0;_, +1/52qi1)(%2q 2”]
cosh(glqi+1/52qi)[—%2q2i] .

from the above equation we have

[[rT] 2]
1l o172

fi+ fi2+1

In terms of the known quantities such a function and gradient values,

Pi ="

pi =

from

g; = F.Q(x, -x)

Ois = FQ(xy —X)

Where Q is the Hessian Matrix and x” is the minimum point, we
have:

_II f  +f i21+1}2 +1}[In[ foo+yf . +1)—ZT |
frf
(RS GO G|
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Furthermore
Since

Therefore. we can express O; as follows: -
_ gi—lT (X4 +A4,d, — X)
giT (x— X*)

Pi

giT(Xi —X') = giT(Xi + A,d, —X)
:giT(Xi _X*)

From (4) and (5), it follows that:

Pi = P [%} +4,91,d,,/2Fq,

Where qz/i{ln(ﬂﬂ)-j}

Hf +\/ﬁ}2+1:|—gz[ln(f +\/ﬁj—§j2
Zlf +\/f 2 +1J
The quantities g, , /g, and F.q, can be rewritten as:

and f =
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From the definition of ©O; we have:

([ a7

f+/f
ol 1]
_ foryffl e B (21070,
R A I AR 0 e B R 0 ) KGR D
) fi§ fi | 7 foeyfo

Using the following transformation:

In[fi +4f? +1]—i =y+w and In[fi +y f? +1]—In[fi,1 +f4 +1]:w
&

c=2,00,d,
then y=cw/xw+c
Therefore
IR O I 2 2, 2 2 ST RS
2 fiityfii+l Jl'[ln(fi-ﬁ 3 +1)_|n(fi_1+ fi§1+1)]+ﬂ,,_1gi_1di_1

lfi_l +fA+

3. Numerical Results and conclusion :

In order to test the effectiveness of the new algorithm which has been
used to extent the CG method , a number of test functions have been chosen
and solved numerically by utilizing the new and established method.

The same line search was employed for all the methods. This was the
cubic interpolation procedure described in [8].
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It is found that the NEW method which modifies CG-algorithm is
better than the standard algorithm shown in Tables (1) and (2). The new
method gives an overall improved over the classical CG Algorithms in the
16 and cases out of 20, respectively. The new method can therefore be

considered promising .

Table (1), which uses the H/S formula, presents a comparison
between the results of the NEW method and the classical CG-method. So
we can show that the NEW method has less (NOI) and (NOF) than the
classical CG. Method and NEW method improves the two measures of
performances, vis (NOI) and (NOF) (81.46)% and the (79.49) % for the H/S
formula.

Table (1) the comparison between the different ECG — method by

using H/S formula.

Test N New Classical CG
Function NOI (NOF) NOI (NOF)
2 16 (46) 19 (53)
CUBIC 100 14 (36) 14 (40)
400 13 (33) 14 (40)
2 35 (91) 34 (87)
ROSEN 40 18 (55) 17 (52)
100 20 (59) 17 (52)
10 25 (64) 35 (89)
POWELL 60 65 (173) 125 (303)
400 374 (754) 401 (860)
4 27 (61) 26 (60)
WOOD 40 47 (100) 59 (126)
100 54 (114) 103 (213)
20 41 (105) 54 (141)
MIELE 40 72 (173) 82 (197)
100 102 (253) 142 (346)
10 21 (115) 20 (135)
CANTRAL 80 20 (112) 20 (132)
100 18 (101) 20 (132)
Non 40 16(45) 22(73)
Diagonal 400 16(46) 22(59)

18



A Hyperbolic Rational...

Total

NOI
(NOF)

1015 (2536)

1246 (3190)

Table (2), which uses the P/R formula, presents a comparison
between the results of the NEW method and the classical CG-method. So
we can show that the NEW method has less (NOI) and (NOF) than the
classical CG. Method and NEW method improves the two measures of
performances, vis (NOI) and (NOF) by (73.99)% and the (80.70) % for the

P/R formula.

Table (2) the comparison between the different ECG — method by
using P/R formula.

Test . New Classical CG
Function NOI (NOF) NOI (NOF)
100 18 (34) 15 (40)
CUBIC 200 14 (39) 15 (40)
400 13 (33) 15 (40)
10 24 (64) 26 (68)
ROSEN 200 18 (56) 22 (61)
400 17 (53) 22 (61)
10 20 (111) 22 (103)
CANTRAL 60 29 (193) 18 (103)
400 23 (160) 22 (157)
4 27 (61) 33 (74)
40 61 (128) 68 (144)
WOOD
80 83 (172) 85 (178)
100 105 (217) 108 (213)
40 52 (128) 71 (155)
80 49 (107) 118 (255)
POWELL
100 105 (240) 119 (252)
200 76 (163) 205 (427)
Non 60 17 (49) 18 (53)
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Diagonal 200 13 (41) 25(68)
400 15 (44) 24 (68)
Total NOI (NOF) 774 (2093) 1046 (2592)
Appendix

Cubic Function :

9 =10tk g + -, o= (12-1)T
Non - Diagonal Variant of Rosenbrock Function :

F(x)=§:2 [100(><i—xi2)2+(1 _Xi)z} n>1,

i
Wood Function

n
F(x)= ig1112|.00|:(x4i_2+ X421i_3)2 +(1 _X4i—3)2 +901x 4 _Xlzli—l)z +(1 _X4i—1)2 +10.1(x4i_2—1)2
+(X4i —1)2 +19.8(x4i_2—1 X4i —1):|

%0 = (-30;1.0;-3.0;-10;.....) T
4. Generalized Powell Quartics Functions :
n
%
Fi) = '21 {(><4i—3+10><4i—2)2 +5(><4i—1—x4i)2 +(2<4i—2—2X4i_1)4 +1o(2<4i_3_x4i)4}
1=
xg=(3.0;-1.0;0.0;1.0) T
Rosenbrock Function :

F(x) = %1 [100(><2i _X%i—)z +(1_X2i_1)2}

I=
X0= (-1.2;1.0;........)T
Miele Function :
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n
F(x) =é41 eXP(><4i—3) 'X4i—2]2 +100(><4i—2—X4i—1)6 +
ftanbeai_1-xaf x8_g+beai-1f

x0=(1.0;2.0;2.0;20,.....) T

Cantral Function :

n
F(x) =i=é41 e><I0(><4i—3) 'X4i—2]4 +100(><4i—2—X4i—1)6 +
Joranlesisxall +xG_s

xo=(1.0;2.0;2.0;20,....) T
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