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ABSTRACT
In this paper, the problm of sequencing n jobs on one machine is
considered with a multi objective function. Two problems have been studied,
sum of completion times added with the maximum tardiness
(Z C, + Tmax ) and sum of completion times with the maximum tardiness
ieN
(>.c. andT __ ), the first one has optimal solution solved by Branch and
ieN
bound technique, the second has efficient solutions founded by Van
Wassenhove algorithm.A theorem is presented to show a relation between
the number of efficient solutions, lower bound (LB) and optimal
solution.This theorem restricts the range of the lower bound, which is the
main factor to find the optimal solution.Also the theorem opens algebraic
operations and concepts to find new lower bounds.

Keywords:Lower Bound,Multi Objective,Efficient Solution function ,
Optimal Value.
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1.Introduction :
Although there are a lot of published results on single machine

problems with tardiness (Ti ), there are only some papers dealing with multi

objective function[Lauff and Werner , 2004]. The problem class considered
is as follows :

n jobs 1,2,3,...,n have to be processed on a single machine (m=1) and
become available at time zero , require a positive processing time P;
[Potts,1991].For each job i ,a processing time Pi ,a due date d; , are specified
.Given a schedule,we can compute for each job i the completion time c; , the

tardiness T, = max{ ci—d;, 0} and

T__ =max { T.}.Many sequencing problems have a combinatorial nature

and they are very difficult to solve to optimality within acceptable
computation time. We consider a multi objective function which is the sum
of completion time(z C,) and the maximum

ieN

tardiness (T__ ) [Abdul-Razag,2001].

2.Notations and Definitions :

N=the set {1,2,3,...,n}.

Pi =processing time for job i .

di =Due date for job i.

ci =Completion time for job i.

Li =Lateness of job i.

Ti =Tardiness of job i.

EDD- rule: (Early due date) meaning the jobs are sequenced in non-
decreasing order

of di

SPT-rule: (Short processing time) meaning the jobs are sequenced in non-
decreasing order of p; .

LB: ( Lower bound ) is a value of objective function, which is less than or
equal to optimal value.

UB: ( Upper bound ) is a value of objective function, which is greater than
or equal to optimal value.
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Example:
I |1]2]3
Pi|3]5]|4
di|9]8]2

For this schedule ( 1,2,3 ) we find ¢i and Tmax as follows :
C1=P1, C2=C1t+ P2, C3 = C2+ pz and Ti =max{ci-di , 0}.

i [1]2] 3
Pi|3|5] 4
di|9|8] 2
Ci |3]8]12
Ti|0|0|10

3
Therefore ) C =23and T__ =10.
i=1

3.Van Wassenhove Algorithm

In 1978 Van Wassenhove and Gelders[Van Wassenhove and
Gelders,1980] present an algorithm to find all efficient solutions for the
problem

>c andT _ ... (1)

ieN

The Algorithm :
Step(0) : Put A=Y P,
ieN
Step(1) : Let Di =di +A for all i.
Step(2) : Solve using modified smith rule , if a solution exists then it is
efficient.Else,go to step (4).

Step(3) : Compute T__ .PutA=T __ 1, go to step(l).

Step(4) : Stop.

The algorithm finds only the efficient solutions for (1). After that several
attempts were done to solve this problm [Ramadhan and Abdul-Razaq |,
2001].In 1993 using branch and bound technique, the problm solved up to
30-jobs [Abdul-Razaq,1993 ].This technique used upper bound ( UB ) and
lower bound (LB ), where

uB= > .C.(SPT)+T__ (SPT)andLB=>.C (SPT) +T__, (EDD).

ieN ieN

25



Ayad M.Ramadhan and Adil K.Jabbar

4.Relation Between Optimal and Efficient Solutions :

We know that a lower bound is less than the optimal solution.The
question is: “ What is the difference between lower bound and the optimal
solution ?”of course , this depends on the lower bound and the objective
function , our objective function is (> c, +T__ ) and the lower bound is

ieN
given as LB =Y C (SPT)+T_(EDD). The relation between the
ieN
optimal value , LB and efficient solutions is given in the following theorem .

Theorem :

There exists a non-negative integer M such that LB + M = Optimal value
and
M & [N1-1,No+1] , where :
N:=number of efficient solutions .
N2=T (SPT)-T_ (EDD).
Proof :

Since LB < optimal value , so there exists a non-negative integer M such
that
LB + M = optimal value which proves the first part of the theorem.It
remains to show that M € [N1-1,N2+1] or to show Ni-1<M <N, +1.

Now LB + M = optimal value,thus M = optimal value — LB < UB-LB
=>" ¢ (SPT)+T_ (SPT)->c (SPT)-T,, (EDD)=

T (SPT)-T_(EDD) =N, <N, +1.

Hence M < Nz + 1.We will prove Ni1-1 < M by induction on Nj.

If N1 = 1,that is there is only one efficient solution which is SPT as
well as EDD then
M=0ptimal value -LB = > C, (0pt.) +T_ (opt.)-3 ¢ (SPT) -

ieN icN
T. (EDD)=>.¢(SPT)+T,_ (SPT)->c(SPT)-T, (EDD) =0.
ieN ieN

Thus N1-1 <M <Nz + 1.

That is M € [N1-1,No+1], and so the theorem is true for Ny = 1.

If N1 = 2, i.e, the number of efficient solutions is two which are SPT
and o, say. N1=2 implies that N1-1=1, if SPT is optimal then
M=%"c (opt)+T, (opt.) —>.C.(SPT) T, (EDD)

ieN ieN

=3¢ (SPT) +T, (SPT)->c (SPT)-T_ (EDD) = 1=N:-1.

ieN ieN
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Hence N1-1 <M <N2+1.
And now if ¢ is optimal then
M=>.¢(o)+ T, (o) 2.¢(SPT)- T (EDD) =
ieN ieN
2.C(0)+ 2.C,(SPT) = 1=Ni-Lthus again No-1< M< Nz+1, and so

ieN ieN
M & [N1-1, N2+1] and hence the theorem is true for N1 = 2.
If N1 = 3, i.e.,there are three efficient solutions SPT, ¢ and o1, say .
Ny =3—>Ni-1=2,if SPT is optimal , then
M=>C(SPT) +T_(SPT)- >.c(SPT)-T_ (EDD) =
ieN ieN

T _(SPT)-T_(EDD) >2=Ni-1.

Hence N1-1 < M < N2+1 or M € [N1-1,No+1].

If o isoptimal, then
M=> ¢ (o) +T, (o) -2 c(SPT)-T_(EDD)=> c (o) -

ieN ieN ieN
> Cc(SPT)+T_(o)— T, (EDD)> 1+1=2=N;-1.
ieN

Hence Ni-1 <M <N2+1 or M € [N1-1,N2+1]. Finally if o1 is optimal,
then
M= Zci (O-l) + Tmax (01) - ZCi (SPT) _Tmax (EDD) =

ieN ieN
Y.C(0,)—>c(SPT)>2=N, —1.Hence N:-1<M<Nz+1 or M & [Ni-
ieN ieN
1,N2+1].Thus the theorem is true for Ny = 3.

Suppose the theorem is true for N1 = k , i.e., the theorem is true for
the k efficient solutions SPT, ¢ , 61, ..., ok2 ,that is for these k efficient
solutions N1-1 <M< No+1.

Let N1 = k+1,that is , there is k+1 efficient solutions SPT , ¢, o1,...,
ok-2, ok-1, If any one of the first k efficient solutions SPT , 6, o1,...., 6k-2, IS
optimal then since the theorem is true for N1=k , we get Ni-1 < M , and
hence N1-1<M <Nz+1 and if the last efficient solution ok-1 is optimal , then
m=>c(o )+ T_ (o.,)—->c(SPT)-T_ (EDD)=

ieN ieN
Y.C(0,,) =D ci(SPT)> k=k+1-1=Ns-1 thus Ni-1 <M<Nz+1 or
ieN ieN
M & [N1-1,No+1].
Thus the theorem is true for N1 = k+1 which completes the proof.
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Example
i [1]2]3]4
Pil2]4]3]1
di|1]2]4]6

Using Van Wassenhove algorithm for this example we find three

efficient solutions,ie, N1=3. T (SPT) =8, T _(EDD) =5, and
thenN.=T_ (SPT)-T _(EDD) =3.
Thus [N1-1,N2+1] = [2,4]. ZA:Ci (SPT) =20, LB =20 +5 = 25, optimal value

= 27. Therefore M = optimal value — LB = 27 — 25 =2 , and clearly 2 ¢
[2,4].

5.Conclutions and Suggestions

At the end of this paper , we conclude that the lower bound of a
problem is one of the important factors to understand the nature of objective
function and the method which is used to solve the problem .Also the
efficient solutions used to find optimal solution ,but in our objective
function , the relation between them will lead to a new area of study , that is
the difference between optimal value and lower bound with the help of
efficient solutions . This study opens algebraic operations and concepts to
solve any problem of this type.

Lastly , using the new lower bound of this objective function
certainly leads to other results.
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