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ABSTRACT

Stability analysis of steady state solutions of Huxley equation using
Fourier mode stability analysis in two cases is investigated. Firstly when the
amplitude is constant and secondly when the amplitude is variable and the
results were found to be: The solutions u, =0and u, =1 are always stable
while the solutions u, =a and u, =u,(X) are conditionally stable. In the
second case, a comparison between the analytical solution and the numerical
solution of Galerkin method is done and the results are the same.
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1. Introduction

Consider a system of any nature whatsoever that exists in a state S.
We say that S is stable, in one sense or another, if small perturbations or
changes in the system do not drastically affect the state S. For example, the
solar system currently exists in a time-dependent state in which the planets
move about the sun in an orderly fashion. It is known that if a small
additional celestial body is introduced into the system, then the original state
is not disturbed to any significant degree. We say that the original state is
stable to small perturbations. Similar questions of stability arise in every
physical problem (Logan (1987)). McKean (1970) investigated the steady
state solutions of Huxley equation for some values of the wave velocity c.
Maginu (1978) studied by the use of Lyapunov’s second method the
stability of such stationary solutions. Fife (1979) analyzed the possible
asymptotic behavior of stationary solutions of bistable equation. Conley and
Smoller (1980) used some topological concepts in the study of stationary
solutions. Smoller and Wasserman (1981) obtained the exact number of
steady state solutions subject to Dirichlet boundary conditions. Manoranjan
et al (1984) obtained the estimates for the critical lengths of the domain at
which bifurcation occurs in the cases b=0,a(0<a<1/2), and 1.

Manoranjan (1984) studied in detail the solutions bifurcating from the
equilibrium state u=a.

Eilbeck and Manoranjan (1986) considered different types functions
for the pseudo-spectral method applied to the nonlinear reaction-diffusion
equation in 1- and 2- space dimensions. Eilbeck (1986) extended the
pseudo-spectral method to follow steady state solutions as a function of the
problem parameter, using path-following techniques.

Fath and Domanski (1999) studied the cellular differentiation in a
developing organism via a discrete bistable reaction-diffusion model and
they investigated some properties of the bifurcation of steady state solutions.
Lewis and Keener (2000) studied the propagation failure using the one-
dimensional scalar bistable equation by a passive gap and they reduced the
problem of finding conditions for block to the problem of finding the
existence of steady state solutions.

In this paper, the stability of steady state solutions of Huxley equation is

analyzed.
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2. The Mathematical Model

One of the famous nonlinear reaction-diffusion equations is the
generalized Burgers-Huxley (gBH) equation:
ou sO0u o4 Y
—+al’ ——-—=All-u’ Ju° —-a 1
«>0,$>0,6>0&ac(0,)

If wetake 6 =1,a =0, and 8 = 0, equation (1) becomes the
following Burgers-Huxley (BH) equation:
ou ou o

at+au&_¥:'w(l_u)(u_a) (2)

Equation (2) shows a prototype model for describing the interaction
mechanism, convection transport. When g =0, 6 =1, equation (1) is
reduced to Burgers equation which describes the far field of wave

propagation in nonlinear dissipative systems

2
Ny U _g (3)
ot oX OX
When « =0, 6 =1, equation (1) is reduced to the Huxley equation which
describes nerve pulse propagation in nerve fibers and wall motion in liquid

crystals
ou o«
E—y=ﬂ1(1—u)(u_a) (4)

It is known that non-linear diffusion equations (3) and (4) play
important roles in nonlinear physics. They are of special significance for
studying nonlinear phenomena (Wang et al, 1990). Zeldovich and Frank-
Kamenetsky formulated the equation (4) in 1938 as a model for flame front
propagation and for this reason this equation is sometimes named
Zeldovich-Frank-Kamenetsky (ZF) equation, which has been extensively
studied as a simple nerve model (Binczak et al, 2001). In 1952, Hodgkin
and Huxley proposed their famous Hodgkin-Huxley model for nerve
propagation.

Because of the mathematical complexity of this model, it led to the
introduction of the simpler Fitzhugh-Nagumo system. The simplified model
of the Fitzhugh-Nagumo system is Huxley equation (Wang,1985). Because
Huxley equation is a special case of Fitzhugh-Nagumo system, it is
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sometimes named Fitzhugh-Nagumo (FN) equation (Estevez and Gordoa,
1990) or the reduced Nagumo equation or Nagumo equation (Pesin and
Yurchenko, 2004). In sixties, Fitzhugh used equation (4) as an approximate
equation for the description of dynamics of the giant axon. This equation
was among the first models of excited media (Landa,1996).

In this paper, we shall take the Huxley equation as a model problem
(Manoranjan et al ,1984):
ou ou
——-—=Al-ufu-a
xe[-LL]t>0
u(x0)=(b-H)x*+H,b>0,H >0

u-Lt)=u(Lt)=h (5)

For a dimensionless form, we introduce the following dimensionless
quantities:

X=x/L,T=t/1?
Substitute these non-dimensional quantities in equation (4), it follows that:

2
%: sxi AL Aul—u)u—a) 6)
u-1t)=u(l,t)=b , b>0, -1<X<1 (7)
The equations (6) and (7) represent the non-dimensional form of Huxley
equation in x and t.

3. Fourier Mode Stability Analysis

Assume that the solution of equation (6) can be written in the form
(Logan ,1987):
u(X,T)=u,(X)+u,(X,T) (8)
where u,(X ) is the steady state solution and u,(X,T) is the disturbance.

Substitute (8) in (6), with its boundary conditions, we get the following
equation:
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ou, d?u, 8 u,
6T2 = ax? 6X2 2 — pLu] — ALl%u; —3pL%ufu, —34%u,u;

+(1+a)A%uf + 1+ a)ﬂLzuz2 +2(1+a)A%u,u, —apl’u, —afllu,

If we separate the two cases, we obtain

ou, o
8_1'2 = 875 - AU} —34%ulu, —342uU; +

(1+a)A%u? +2(1+a)A uu, —afllu, (9)

2
3)(“21 — A%l +(1+a)A’u —afl’u, =0

which can be written as
2

W+L2ﬁu (1-u;)(u,-a)=0 (10)

ul(—l):ul(l):b, b>0, -1<X<1 (11)
The solution of steady state case (10) and (11) is (Manoranjan et al ,1984):

3a/\[(2-a)1/2-a)cosh(vaLX )+1+a, 0<a<1/2,f=1
(t2)

u(X)= 1/2+asn[l:/)§(1/2-az)uz,a/(l/z_az)uz)’ a=12,p=1

O<a<l1/2
where sn(v,d) represents the Jacobi elliptic function of argument vand

modulus d .The Taylor expansion of sn(v d) is (Clarke (2000))'
sn(v,d)=v —(1+d> ) +(1+14d? +d ) —(1+135d° +135d* + d° ) (13)

Where sn(v,0) = sm( ), sn(v,1) = tanh( )
Note that the case a < (1/2,1) can be reduced to the case a € (0,1/2) by
replacing u, with 1—u, (Pesin and Yurchenko ,2004).

3.1. Stability Analysis in the Case of the Constant Amplitude

We assume that the disturbance has the following Fourier mode form
(Logan ,1987):
U, (X,T)= Agktx=T) (14)

A>0,k>0,c=c, +ic,,i=+-1
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Where A is the wave amplitude, k is the wave number and cis the
wave velocity, the solution is stable if c, <0, unstable if c, >0 and

¢, =0, gives the neutral stability curve which separate between the stable
region and the unstable region (when c, <0 the disturbance decays as
t — o and the stationary solution will be stable, while in the case ¢, >0

the disturbance (perturbation) grows as t — oo and the equilibrium state
(rest point) solution will be unstable, the quantity c, is called the stability

indicator).
Neglecting the non-linear terms in equation (9), we have:
ou, o%u
a—TZ = ax; —-3A4%u, +2(1+a)Au,u, —af’u, (15)

Substitute (14) in (15), we get
34! N 20+a)A’u, ap’

—ic, +c, =—k

k k k
Equating the real and imaginary parts, we get
c,=0
c, - {kz + A2(3u2 + i)— 2L+ a)ﬂ_zul} (16)

According to the sign of c,, we have the following three cases:
,then ¢, > 0, and the solutionk? + AL%(3u? +a) < 2(1+a)A2, (i) If
IS unstable.
,then ¢, <0, and the solution k? + A*(3uZ +a) > 2(1+ a)Au, (ii) If
is stable.
then ¢, = 0, which gives k? + A%(3u? +a)= 2(1+a)A2, , (iii) If
the neutral stability curve
k = J2(1+a)A%u, — A%(3u? +a) (17)
If  21+a)A%u, > AZ(3u? +a)
Now, we shall apply the results above on the following four cases:
(@) When u, =0, substitute in (16), we have

2 2
c, = {“—aﬂl‘} <0
k
I.e. the steady state case u, =0 is always stable.
When u; =1, substitute in (16), we have (b)

:, :{kz +,Bf(1—a)} -0
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I.e. the steady state case u, =1 is always stable.
(c) When u, = a, substitute in (16), we get

c, = {kz h azﬂkLz — aﬂﬂ (18)

From (18), we have
, then ¢, > 0, and the solution is unstable. k* + a* 4> <agL* (i) If

, then ¢, <0, and the solution is stable. k* + a®AL* > aA? (ii) If
, then ¢, =0, substitute ¢, = 0in Eq.(18), we getk® + a’A.> = af? (iii) If

k?’+a’A’-af’=0=k’=af’-a’A’=af’(l-a)=
k =aA’(l-a) (19)

which is the neutral stability curve as in figure (1).

0.4

Ungtable Region

Stable Region

Figure (1) shows the neutral stability curve k = /a4 (1— a) for the steady
state solution u, =a when g=1,L=1,and 0.1<a<0.9

(d) When u, = u,(X) (function of X) as in the equation (12), substitute in
(16), we get
¢, = —|(k? + A2(3u2 (X )+a)—2(1+a)A2u, (X ) /K] (20)
From (20), we have
(i) If k2 + A2(3u?(X)+a)< 2(1+a)A%u, (X ) thenc, > 0, and the solution
is unstable.
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(ii)If k2 + A2(Bu2(X)+a)> 2(L+a)A%u,(X ), then ¢, < 0, and the solution
Is stable.

(iii) If , then c, = 0, which gives k? + A2(3u?(X )+a) = 2(L+a)A%u,(X)

the neutral stability curve
k= 2(L+ a)Au (X )- A*Bu7 (X )+ ) (21)
If 2(1+a)A2u,(X)> A2(BuZ(X)+a)

3.2. Stability Analysis in the Case of the Variable Amplitude

We shall compare the analytical solution with the solution of Galerkin
numerical technique.
3.2.1. The Analytical Solution

We assume that the disturbance case has the following Fourier mode
form (Logan ,1987):

0,(X,T)= A(X g0 (22)

Substitute (22) in (15) and neglecting the imaginary terms in the
resulting equation, we have

A"(X )+ (2(1+a)BL2u, —3A2u7 —aB? —k? —kc, JA(X)=0

The equation above can be rewritten in the following form:
A'(X)+DA(X)=0 (23)
A-1)=Al)=b , -1<X<1, b>0 (24)
D =2(1+a)A%u, —34.°%u] —af? —k* —kc,

The boundary conditions of the amplitude function are the same as
the boundary conditions of the original problem.

The solution of (23) and (24) has the following three cases (Logan
,1987):
(i) If D <0, then the general solution of (23) and (24) is:
A(X)=ae’™* +a,e/P
Since coshx=(e*+e*)/2 and sinhx=(e*—e™)/2
The solution in above can be written as:
A(X)= Bcosh(v— D)X + Csinh(~/— D)X (25)
Where B, C are arbitrary constants.

Calling the constant — D does not mean that
it is negative, we use the negative sign only for convenience.
From the boundary conditions, we have
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Bcosh+-D ~Csinhy-D =b (26)
Bcosh+/- D +Csinh+/=D =b
By adding the two equations in above, we get

B=Db/coshv/-D

Since sinh~/—D =0
substitute B in one of the two equations above, we have

Csinh+/—D # 0. Because D = Owhich implies that C =0
Substitute B and C in the general solution (25), we get

— b -
A(x)_(Cosh ﬁjcosh J-DX (27)

(ii) If D =0, then the general solution of (23) and (24) is:
A(X)=BX +C (28)
From the boundary conditions, we have

C—B:b} (29)

C+B=b

By solving the algebraic system (29), we get

B=0, C=b

Substitute B and C in the general solution (28), we get

AX)=b (30)
(iii) If D > 0, then the general solution of (23) and (24) is:

A(X)=BcosvDX +Csinv/DX (31)
From the boundary conditions, we have
BcosV/D-Csin+/D =b

BeosvD +Csin /D =b }

By solving the algebraic system (32), we get

B=Db

D=(nzf,n=123,. (33)
Substitute B and D in the general solution (31), we get
A(X)=hcos(nz)X +Csin(nz)X (34)
From (33), we have

¢, = —|(k? +(nz)’ + A2(3u? +a) - 21+ a)A2u,) /K] (35)
Equation (35), has the following three cases:
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(i) If k2 +(nz)? + A2(3u? +a)< 2(1+a)AL2u, , then c, > 0 , and the
solution is unstable.

(i) If k?+(nz)f + A2(Bu? +a)> 2(1+a)A%, , then c, < 0,and the
solution is stable.

(iii) If k2 +(nz) + [51_2(3u12 + a)z 2(1+a)Au,, then ¢, =0, to get the
neutral stability curve, we take the smallest eigenvalue when n =1
k=y2(1+a)A%u, - A2(3u? +a)-9.869604401 (36)
If 2(1+a)Au, > A2(3u? +a)+9.869604401

The values for which the problem has a nontrivial solution are called
the eigenvalues and the corresponding solutions are called the
eigenfunctions.

According to these results, we have the following three cases:

(@) When u, =0, substitute in (35), we have

¢, =-|(k? +(nz )} +af?)/k|<0
i.e. the steady state case u, = 0 is always stable.
(b) When u, =1, substitute in (35), we have

¢, =—|(k? + (nz) + A2 (1-a)/k]|<0

i.e. the steady state case u, =1 is always stable.

(c) When u, = a, substitute in (35), we get

¢, =—|(k? +(nz )t +a A2 —aA2) K] (37)

From (37), we have

,then ¢, > 0, and the solution is unstable. k? +(nz )’ +a?A% <af? (i) If

, then ¢, <0 , and the solution is stable. k? + (nz )’ + a® A% > af? (ii) If

(iii) If ,then ¢, = 0, to get the neutral stability k*+(nz) +a?A? > af?

curve , we take the smallest eigenvalue when n =1

k =/aBL’(1-a)-9.869604401

If afLl?(1-a)>9.869604401

(d) When u, = u,(X) (function of X ) as in the equation (12), substitute in

(35), we get

c, = —[(k2 +(nz)? + A% (Bu? (X )+a)-2(+a)A2u, (X )/ kJ (38)

From (38), we have
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(i) If K2 +(nz) + A2(BuA(X)+a)< 2(1+a)Alu,(X) , then c, >0, and

the solution is unstable.

(ii) If K2+ (nz) + A2(3u2(X )+a)> 2(1+a)Au,(X), then ¢, < 0, and the
solution is stable.

(iii) If k? + (n7)? + A2(3u2(X)+a)=2(L+a)Au,(X), then ¢, = 0, to get

the neutral stability curve , we take the smallest eigenvalue when n =1

k = /2(L+a)A2u,(X ) A2(3u3(X )+a)-9.869604401 (39)

If 2(1+a)B2u,(X)> A2(3uZ(X )+a)+9.869604401

3.2.2. Stability Analysis Using Galerkin Method

The residual methods as Galerkin method usually starts with a
governing boundary value problem. The differential equation is written so
that zero occurs on one side of the equal sign. If the exact solution T could
be substituted into the equation, the result would be zero . The exact

solution is not known, so some approximation of the exact solution T" =T
iIs employed instead. Substitution of the approximate solution into  the
differential equation results in an erroneous value r, rather than zero, the
error ris then multiplied by weighting function w, and the product is
integrated over the solution region. The result is called the residual R and is
set equal to zero (Allaire, 1985).

Let the solution of the equations (23) and (24) be in the form:

A(x)zi(sn cosA, X +C,sinA, X) (40)

To find 4, ,we can take any typical term of the summation above as
follows:
A(X)=B, cos 1 X +C,sin A, X

By using the boundary conditions, we have

B,cosA, —C sind,=b
ey | (@)
B.cos4,+C,sin4, =b
By solving the algebraic system (41), we get
A,=nz , n=123.. (42)
B, =b (43)
Substitute (42) and (43) in (40), we get
A(X)=>(bcos(nz)X +C,sin(nz)X) (44)

n=1
Substitute (44) in (23), we get
79



Saad A. Manaa & Mohammad Sabawi

i D(bcos(nz)X +C, sin(nz)X) - i((nﬂ')szOS(nﬂ)X +(nz)’C, sin(nz)X) =0

The residual is:
i[D - (nzz)z] (beos(nz)X +C, sin(nz)X) =R (45)
Cstling Galerkin assumption (Al-Obaidi and Ibrahim ,2001), we have
j{zp:[D-(nzz)z](bcos(nﬁ)X +Cnsin(n7z)X)}¢m(X)dX =0

—1[ n=1
Sn(X)=cos A, X, A, =mz, m=1,23,.... (46)
Any element of the matrix will have the form:
1
X(n,m)= jizp: [D —(n;r)z] (b cos(nz)X +C, sin(nz)X) cos(mz)X dX (47)

—1n=1m=1

The following analytical integrals will be useful:

(1) jcos(nﬂ)x cos(mz)XdX = {1 if n= m}

% 0 if nzm

1

() jsin(n;r)x cos(mz)XdX =0 forany n,m
-1

To determine the value of c,, from (47), we get

D:(n7z)2 =0 =

2(1+a)A%u, —34%u7 —af? —k? —kec, =(nz)
After some mathematical manipulation, one may obtain the algebraic
equation:
c, = —[k2 +(nz)’ + A2(3u2 +a)—2(1+ a)ﬂl_zul/kJ (49)
We observe that equation (49) which is obtained by using Galerkin

method is the same as equation (35) which is obtained from the analytical
solution i.e. the equation (49) will give the same results which are obtained

by using the equation (35) in the cases: u, =0,u =1,u =a, and
u, =u,(X),if we use it to compute those results , this indicates the
efficiency and accuracy of the Galerkin method.

The solution of the eigenvalue problem in 2x2 matrix is:
A =7 =31415926%4 , A, =27 =6.283185307

The solution in the 4x4 matrix is:
A, =m=3.141592654 , A, =2x =6.283185307

Ay =3r =9.424777961 , A, =47 =12.56637061
80



Stability Analysis for Steady...

To get the neutral stability curve, we put ¢, = 0 in equation (49) and
we take the smallest eigenvalue when n =1, we have

k = J2(L+a)A2u, — A2(3u? +a)-9.869604401 (50)
If 2(1+a)A%, > A%(3u? +a)+9.869604401

We note that the equation (50), which is obtained by using Galerkin
method, is the same as equation (36), which is obtained by the use of
analytical solution.

4. Conclusions
We concluded in the constant amplitude case that:

() The steady state solution u, =0 is always stable.
(i) The steady state solution u, =1 is always stable.
(iii) The steady state solution u, = a is stable if:
k?+a’pL*>ap L’
The neutral stability curve in this case is:
k=4agL*(1-a)
(iv) The steady state solution u, = u,(X ) as in the equation (12), is stable if:
k2 + B L2(3u2(X )+a)> 2(1+a) B Lu,(X)
The neutral stability curve in this case is:
k= 20+ )7, (x) - uf (X)+a)
If 2(1+a)B L%, (X)>(3u2(X)+a)
In the case of variable amplitude the comparison between the analytical
solution and the numerical solution of Galerkin method has been done and
the results are the same in the analytical and numerical solution and the

results were found to be:
(i) The steady state solution u, = 0 is always stable.

(i) The steady state solution u, =1 is always stable.
(iii) The steady state solution u, = a is stable if:
k+(nz) +a?pL* >ap L’

The neutral stability curve in this case is:

k = /ag L*(1-a)-9.869604401

If agL’(1-a)>9.869604401
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(iv) The steady state solution u, = ul(X) as in the equation (12), is stable if:

K? +(nz )} + B L2(BuA(X)+a) > 2(1+a) 8 Lu,(X)
The neutral stability curve in this case is:

k = J2(1+a)A2u, (X )- B L2(3u?(X )+ a)—9.869604401
If 2(1+a)B L2u,(X)> AL2(3u(X )+ a)+9.869604401
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