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ABSTRACT 

 

 In this paper, we consider the stability analysis for a disturbed 

unsteady flow, which is two-dimensional incompressible flow in a 

symmetric film where the effect of viscosity can be neglected in comparison 

with inertia forces. The partial differential equations governing such flow 

are obtained from the Navier - Stokes equations and we obtain an analytic 

solution for those equations. The whole system is disturbed and we found 

the regions where the flow is stable or unstable. 
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 المهملة لزوجة ية الغشاء السائل ذو الاستقرار 
سليم داؤد همسة   
جامعة الموصل ، كلية التربية  

 30/06/2003قبول: تاريخ ال                                   09/09/2002تاريخ الاستلام: 

 الملخــص
 مما لممتارال ة للير مماز ال مغمما  ق ممر الاااممل ل   مم ا  تممف  مما اممحا الاسممو حلالممة  تسل ممل اا 

 ظمماث اغممالا الاعممش  مما قظمماب متغمماور  بلامممام اممو  الل  جممة ماال ممة واممو  الا ممول الممحاتا   اممش تممف 
 باا تمممماح  لممما  الس ممموم  لممما المعممماحاي التجائممملية الي ليمممة التممما تسجمممف امممحا الغمممو  مممم  الير ممماز

أز م  لتوكس   اش التخشمت الطرالق التسل ليمة  ما اايماح همل امحع المعماحاي   امش -معاحاي  ا  ر
 الغظاث وأكمله  هشحي المغاطق التا اجوز   ها الغظاث مستارا ا  ق ر مستار 

او   ، ق ر الااال ل    ا الير از ، لير از ال مغا، التارال ةااتسل ل الكلمات المفتاحية: 
  لتوكس-معاحاي  ا  ر، المعاحاي التجائلية الي لية، او  الا ول الحاتا، الل  جة

1- Introduction: 

The dynamics of thin liquids films has been studied by G. I. Taylor 

(1959). The subject is of considerable scientific and technological 

importance. 

Brown (1961) studied experimentally the general behaviour of a thin 

sheet of moving liquid, he found that this measured velocity distribution in 

the curtain compared with the prediction based on a non linear differential 
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equation was attributed to Taylor (1959). He observed that the film is  with 

disintegrate if the follow rate is reduced to a film minimum value. He also 

discussed film stability on the basis of a simple momentum balance applied 

to a stationary free edge resulting from the film breaking. 

The principle of stability of a viscous liquid film has been 

investigated by S. P. Lin (1981). It is shown to be stable with respect to 

temporally and spatially changing varicose disturbances. 

Abdulahad (1994) determines the thickness of a liquid film with 

negligible inertia and also he studied the similarity solution for unsteady 

flow for such liquid films. 

Mosa (2002) considered the stability analysis for fluid flow between 

two infinite parallel plates. 

In this paper we consider the stability analysis of a viscous liquid 

film when the viscous forces are very small compared with the inertia 

forces. 

 

2. Stability equation: 
 

The stability of the described basic flow with respect to two-

dimensional disturbances are to be investigated. 

The general form of the Navier-Stokes equation is defined by: 
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When the viscosity is very small, the Navier-Stokes equation 

reduces to: 
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Substituting the perturbed flow quantities 

( VVV U,UU +=+= ) in to (2) and neglecting some of terms which 

have no perturbation, we have: 
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Now, we introduce the dimensionless variables as follows: 

X = d0x, ,d/Qu,uuU ooo ==  t
u

d
  t 

o

o =  
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Y = doy, 2
oooo uP,d/Qu,vuV ===  

Now equation (3) has a dimensionless form, which are: 
 





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−=++++++

−=++++++

0vu

Pvvv)vv(vuv)uu(v
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yx
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…………..(4) 

Where all subscripts denote partial differentials, (x,y) are the 

Cartesian coordinates in the unit of the film thickness do, ( v,u ) and (u,v) 

are respectively the (x,y) components of the primary flow velocity and the 

velocity perturbations in the unit of  ou , Q being the volumetric flow rate 

per unit width of the film and t is the time. 

It is easily verified that x
3/12

x U)F4/R(u =   

Where   = /duR oo Reynolds number 

and   = o
2
o gd/uF Froude number 

 

1vUuThus)1(OU yxxx −===     if  




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o
3/123/12  

For the case of thin films such that <1, we define a slow variable , 

such that  =  x 

by use of the above relation and neglecting terms of o() as well as the non- 

linear terms in perturbations, we reduce the first two equations in (4) to the 

forms: 
 

 

xxt Pu)(uu −=+  (a) 
yxt Pv)(uv −=+  (b)   ....…………………………....…...(5) 

By elimination of the pressure terms by differentiate equation (a) for 

y and equation (b) for x, we get: 
 

0
x

v
u

tx

v

xy

u
u

ty

u
2

2222

=



−




−




+



  ……………….…………..(6) 

or  

0)
x

v

y

u
](

x
u

t
[ =




−








+



  

or  

0)vu](u[ xyxt =−+ ……………………………………..(7) 
 



Hamsa D. Saleem 
 

 

 14 

Equation (7) is satisfied by the stream function  related to the 

velocity perturbations by  

u = y , v = - x (8) 

By substituting (8) in to (7), we have 
 

0)](u[ yyxxxt =−+  ………………………………….(9) 

Equation (9) is the governing differential equation of the linear 

stability problem under consideration. 

Let the free surfaces of the basic flow and the perturbed flow be:  

)t,x()t,x()x(
2

h
yand)x(

2

h
y =+==  

 

Following Lin (1981), the boundary conditions are as follows: 

1- The kinematic condition at the free surface y =  requires that 

xt )uu(v ++=  
2- The dynamic condition of the free surface, which is massless by 

definition, demands that the net force be zero at the free surface. Demanding 

the vanishing of the force per unit area of the free surface in the x and y 

directions, we have  
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Where K is the total surface curvature and W is the Weber number, 
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T is the surface tension. 

Note that hx = O(). Since Q = ( uuo ) (doh) = constant and xu =O().  

Neglecting terms of O(), balancing out purely primary flow 

quantities, and expanding the remaining primary flow quantities in Taylor's 

series about y = 
2

1 h, and then retaining only linear terms, we reduce the 

above boundary conditions at y =  to the following to be applied at  

 y = 
2

1 h: 

0u xxt =++  ………………………………………….(10) 
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0xxyy =−  ………………………………………….(11) 
0R/2pW xxxx =++  ………………………….(12) 

where  p  can be obtained from (5) in terms of  . 

Now, Substituting (8) into (6), we have 
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We consider for our solution a normal mode of travelling disturbances: 

= (y)ei(x-ct) …………………………………..………………(14) 

Where =2do/,  is the wave length, and c is the wave speed in the unit of 

o
u . 

Substituting (14) into (13), we get: 
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The general solution of this equation is: 

)ycosh(B)ysinh(A)y( += ……………………………..(15) 

Where A and B are integration constants. 

Since the governing differential system is linear and homogeneous, we may 

consider the odd solution for  separately. 

 

3. Varicose waves: 
 

The odd solution for  corresponds to the anti-symmetric 

disturbance, which displaces each of the free surfaces in opposite directions. 

Now we take the odd solution from (15), which is: 

)ysinh(A)y( =  (16) 
Substituting (16) into (14), we get: 

)ctx(ie)]ysinh(A[ −=  (17) 

Substituting (17) into (5) and (8) and solve for p yields: 
)ctx(ie)ycosh(Acp −=  …………………………….(18) 

where ucc −= , h
2

1
y =  

Equation (10) has a solution of the form: 

)ctx(i1 e)]h
2

1
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Substituting (17) into (11) and (17), (18), (19) into (12), yields: 
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and 
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Equation (20) give a trivial solution and so we neglect it. 

From equation (21), A 0 and therefore: 
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For both temporally and spatially growing disturbance of long wave 

lengths, →0 near the neutral stability curve and the secular equation (22) 

can be expanded in powers of  as  
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For the temporal case  is real and c is complex. The solution of (23) 

for c gives. 
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It follows that  cI < 0 regardless of whether the wave speed relative 

to the fluid particle is zero or not. Therefore, the temporally changing 

varicose disturbances are damped with a dimensional damping rate given 

by: 

2
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To investigate the spatially growing disturbances of long wave 

length, we multiply (23) by 2 and identify c with  to have: 
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The solution of equation (24) in power of small  gives the 

following complex wave number 
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Thus the spatially varying disturbance are also damped travelling 

waves. 

 

 

 

 

 

 

4- Conclusion: 
 

  We consider both cases of temporally and spatially growing 

disturbances. For the formal case  is real but c = cR+icI  is complex. For the 

latter case =R+iI is the complex wave number but c =   is the real 

wave frequency. Thus, temporally changing disturbances are stable or 

unstable depending on if cI < 0 or cI > 0, and spatially changing disturbances 

are stable or unstable depending on if I > 0   or  I < 0. 

We have two notes here that in this paper we neglect the effect of 

viscosity and we obtain a second order non-linear differential equation, 
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while if we take the effect of viscosity, we obtain the fourth order non-linear 

differential equation as it is given by Lin (1981). We note here that there is 

some differences between the above two cases. 
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