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ABSTRACT

In this paper, we consider the stability analysis for a disturbed
unsteady flow, which is two-dimensional incompressible flow in a
symmetric film where the effect of viscosity can be neglected in comparison
with inertia forces. The partial differential equations governing such flow
are obtained from the Navier - Stokes equations and we obtain an analytic
solution for those equations. The whole system is disturbed and we found
the regions where the flow is stable or unstable.

Keywords: stability analysis, unsteady flow, incompressible flow, viscosity,
inertia forces, partial differential equations, Navier - Stokes equations.
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1- Introduction:

The dynamics of thin liquids films has been studied by G. I. Taylor
(1959). The subject is of considerable scientific and technological
importance.

Brown (1961) studied experimentally the general behaviour of a thin

sheet of moving liquid, he found that this measured velocity distribution in
the curtain compared with the prediction based on a non linear differential
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equation was attributed to Taylor (1959). He observed that the film is with
disintegrate if the follow rate is reduced to a film minimum value. He also
discussed film stability on the basis of a simple momentum balance applied
to a stationary free edge resulting from the film breaking.

The principle of stability of a viscous liquid film has been
investigated by S. P. Lin (1981). It is shown to be stable with respect to
temporally and spatially changing varicose disturbances.

Abdulahad (1994) determines the thickness of a liquid film with
negligible inertia and also he studied the similarity solution for unsteady
flow for such liquid films.

Mosa (2002) considered the stability analysis for fluid flow between
two infinite parallel plates.

In this paper we consider the stability analysis of a viscous liquid
film when the viscous forces are very small compared with the inertia
forces.

2. Stability equation:
The stability of the described basic flow with respect to two-

dimensional disturbances are to be investigated.
The general form of the Navier-Stokes equation is defined by:

DU; oP 2 (1)
- G UV 2 U rerreerreereeeteeeiiieiiiiii e
P bt ox, HY i

When the viscosity is very small, the Navier-Stokes equation
reduces to:

o DU 0P ()
Dt oX;
Substituting the perturbed flow quantities
(U=U+U, V=V + V) into (2) and neglecting some of terms which
have no perturbation, we have:

ot oX 85 oY @X p oX
ot oX oX oY oY p oX

ou oV

LN o

oX oY

Now, we introduce the dimensionless variables as follows:

X=dox, U=T U, Uo=0Q/d, , t= Joy

0
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Y=doy, V=U,Vv,uUo=Q/d, ,P=pu2

Now equation (3) has a dimensionless form, which are:
u, + (U +u)u, +ut, +(V+Vv)u, +vl, =-P,
Vv, +(U+u)v, +uv, +(V+ v)vy W, =P, e (4)
u,+v, =0

Where all subscripts denote partial differentials, (x,y) are the
Cartesian coordinates in the unit of the film thickness do, (G,\_/) and (u,v)

are respectively the (x,y) components of the primary flow velocity and the
velocity perturbations in the unit of U,, Q being the volumetric flow rate

per unit width of the film and t is the time.

It is easily verified that T, = (R/4F%)'3U,
Where R =pU,d,/p =Reynolds number
and  F=uj/gd, =Froude number

U, =0@) Thust, =8U, =-v, <1 if

(R/4F2)1/3 =(92/4V)1/3(dg/Q)=6<11 V=E
p

For the case of thin films such that <1, we define a slow variable &,
such that & = 6x
by use of the above relation and neglecting terms of o(56) as well as the non-
linear terms in perturbations, we reduce the first two equations in (4) to the
forms:

U +U(E_>)ux :_Px (@
Vi +UEV, ==Py(0) L i Q)

By elimination of the pressure terms by differentiate equation (a) for
y and equation (b) for x, we get:

o%u  _ 9%u  o%v _o%v 6
+u — —u =0 ................................. ()

oyt oyox  oxot  oxZ

or

0 0 .,0u

[ UG, 500

or

[Of +TOKJ(Uy —Vy ) =0 (7)
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Equation (7) is satisfied by the stream function  related to the
velocity perturbations by
u=4Yy,v=-¥x (8)

By substituting (8) in to (7), we have

[0¢ + U8 J(Brox — Oy )W =0 oo, )

Equation (9) is the governing differential equation of the linear
stability problem under consideration.
Let the free surfaces of the basic flow and the perturbed flow be:

Yy = ig(x) and y:i%(x) + n(x,t) =C(x,t)

Following Lin (1981), the boundary conditions are as follows:
1- The kinematic condition at the free surface y = & requires that

V:Ct +(U+U)Cx

2- The dynamic condition of the free surface, which is massless by
definition, demands that the net force be zero at the free surface. Demanding
the vanishing of the force per unit area of the free surface in the x and y
directions, we have

[P+ = (T + U)oy —[(U+ U}y + (V+ V), /R FWKE, =0,

[P+ 2 (V4 V)y 1[0+ U)y + (V4 V) J6 /R F WK =0

, are respectively
Where K is the total surface curvature and W is the Weber number,

1
(E=Zh+mM)y
2 W=—1

K = T : —
[+ h+ i1 pusdo

T is the surface tension.
Note that hx = O(3). Since Q = (Uo U ) (doh) = constant and U x =O(3).

Neglecting terms of O(58), balancing out purely primary flow
quantities, and expanding the remaining primary flow quantities in Taylor's

series about y =+ 1 h, and then retaining only linear terms, we reduce the
2

above boundary conditions at y = { to the following to be applied at

y=t 1h;
2
Mo T W =0 cereeeeeeeeeeeeeeeeeeee e (10)
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Wyy =Wk =0 (11)

Wy +P+2Wo /R =0 et (12)
where p can be obtained from (5) in terms of v .
Now, Substituting (8) into (6), we have
3 3 3 3
8‘1’2+U8‘P2+6‘P2+U6‘§’=0 .................... (13)
otoy oxoy?  otox ox
We consider for our solution a normal mode of travelling disturbances:

= (Y O (14)
Where a=2ndo/A, A is the wave length, and c is the wave speed in the unit of
u 0
Substituting (14) into (13), we get:
_ 2
[io(c—w](d2 —a?)p=0, Where d2= dd—2
)%
or
d?¢
a2 a$p(y) =0
The general solution of this equation is:
d(y) = Asinh(ay) + BCOSN(OLY) -+ v evvvrmenininiiiiiiiiin (15)

Where A and B are integration constants.
Since the governing differential system is linear and homogeneous, we may
consider the odd solution for ¢ separately.

3. Varicose waves:

The odd solution for ¢ corresponds to the anti-symmetric
disturbance, which displaces each of the free surfaces in opposite directions.
Now we take the odd solution from (15), which is:

d(y) = Asinh(ay) (16)

Substituting (16) into (14), we get:

w = [Asinh(ay)]e' >~ (17)

Substituting (17) into (5) and (8) and solve for p yields:

p = ac’Acosh(oy)e!™xX—C (18)
, — 1

where ¢'=C—U, y:iEh

Equation (10) has a solution of the form:

n :ic'il[ASinh(%ah)]eia(xfd) ................................... (19)
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Substituting (17) into (11) and (17), (18), (19) into (12), yields:
A[20L2 Sinh(%och)]zo ............................................ (20)

and
A[c’cosh(;och) - Wc’locsinh(;och) + 2R1iacosh(;och)] _0..-(21)

Equation (20) give a trivial solution and so we neglect it.
From equation (21), A #0 and therefore:

c’cosh(%och) — WC’_locSinh(% ah) + 2R o cosh(%och) =0
or
¢'? + (2iaR )¢’ — War tanh(% R N 22)

For both temporally and spatially growing disturbance of long wave
lengths, a—0 near the neutral stability curve and the secular equation (22)
can be expanded in powers of o as

r2 : e AP 1 1 3h3
c'“+RiaR ) —Wao[=ah —-——a’h =0
(2iaR™) a[zoc e )]

or
(C—G)Z+2iocR_1(c—G)—%Whoc2+O(on3):0 ........... (23)

For the temporal case a is real and c is complex. The solution of (23)
for c gives.

c=u—ia/R ioc[%Wh—(llR)z]llz

It [%Wh—(llR)2]>0, Then
c,=—al/R

Cr =G¢Oc[%Wh—(1/R)2]l/2

Butif [_Wh— (/R)?]<0,  Then
C =—OL/R$OL[%(1/R)2—%Wh]1’2 ,

CRZG

16



Stability of Liquid Film...

It follows that c < O regardless of whether the wave speed relative
to the fluid particle is zero or not. Therefore, the temporally changing
varicose disturbances are damped with a dimensional damping rate given

by:

1 ,U, A4n?v

R™ d, 22
To investigate the spatially growing disturbances of long wave

length, we multiply (23) by a? and identify a.c with o to have:

a?(c—u)? +2ia*RY(c—u) —%Whoc“ +O(a®) =0
or
(co—oca)z+2ioc2R_1(co—ocG)—%Whoc4+O(oc5)=0 ...(24)

The solution of equation (24) in power of small © gives the
following complex wave number
o 2i »?

a=—+""T 4+ O0(03), Where
u R (@)
(6)] oC
aR—==T’
u u
2w?  2a?
o) = _3:——>O

Thus the spatially varying disturbance are also damped travelling
waves.

4- Conclusion:

We consider both cases of temporally and spatially growing
disturbances. For the formal case « is real but ¢ = cr+ic; is complex. For the
latter case a=ar+ioy is the complex wave number but ac = ® is the real
wave frequency. Thus, temporally changing disturbances are stable or
unstable depending on if ¢;< 0 or ¢;> 0, and spatially changing disturbances
are stable or unstable dependingon if cu>0 or ou<O0.

We have two notes here that in this paper we neglect the effect of
viscosity and we obtain a second order non-linear differential equation,
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while if we take the effect of viscosity, we obtain the fourth order non-linear
differential equation as it is given by Lin (1981). We note here that there is
some differences between the above two cases.
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