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Abstract
In this paper, a new self-scaling VM-algorithm for unconstrained
non-linear optimization is investigated. Some theoretical and experimental
results are given on the scaling technique, which guarantee the Super-linear
of the new proposed algorithm.
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1.Introduction

Conjugate Gradient (CG) methods were first used to solve the
general unconstrained problem by Fletcher and Reeves [14]. Their algorithm
(or simple variants) is still frequently used, especially for problems with a
large number of variables since they require only a few vectors of length n
to be stored.

Given a symmetric positive definite matrix G, the finite set of non-
null vectors {d1, do, ..., d«} are said to form a conjugate set if

df Gd; =0 for all i= j

An important class of quasi-Newton methods for solving the
unconstrained optimization problem, [13]

min f(x), )
xeR"
was proposed by [7]. It consists f iterations of the form
Xpoy =X, + A dy k>1, )
where
d, =—-B'gy ©)

Here Ak is a step length parameter satisfies the Wolfe conditions with exact
line search strategy, i.e.

(X + 1, d) <F(x)+akr,ged, 4)
g(Xk+7\'kdk)Tdk Zﬁgldk ®)

for g < 1 and a<pB < 1, and gk denotes the gradient of f at x.

2

The Hessian approximation By is updated by means of the formula
B\SSk Bi 4 YiYe
Sk BySk YiSk
where ¢ is a scalar, yk = gk+1-0k, Sk = Xk+1-Xk and

Vk:|: Y BiSk } 7)

T T
YkSk Sk BiSk

By, =By — +(I)k(S-II<-BkSk)VkV-Ik—1 (6)

The choice of the parameter @, is important, since it can greatly
affect the performance of the methods. The BFGS method corresponds to

¢ =0.
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Variable metric (VM) methods were originally proposed by Davidon
[11]. Subsequently, many authors have extended the theory and
practice,[12] for a survey. The search direction in a VM- method is the
solution of the system of equations:

d, =-H, 0,

where the matrix Hk is an approximation to G;l, the inverse Hessian of the
function f(x). and:

T T
Vi G Vi =V Yy

This relationship is exact if the non-linear function f is exactly equal
g. The new approximation for the inverse Hessian Hg+1 is chosen to ensure
that

Hy s Vi =&k Vi

where &, is a scalar; generally for the quasi-Newton (QN) method &, =1
and hence (3.15) reduces to

Hk+1 Yk = vk (called the QN-condition)
And
Hk+1 = Hk + Ck

The matrix Cx is therefore, the update to Hx .
For the next iteration B+ is updated by Al-Bayati’s VM-update, i.e.

T T
_ BkTSkSkBk + SkTBkYE Iy, (8)
SkBisk (k)
See [1] for more details and properties of this algorithm.

Bk+1 = Dy

Algorithm 1.1:, [6]

(1) For a starting point x1 and non singular matrix V1 ; set k =1.
(2) Terminate if Hg k+1H < €, €is asmall positive real number.

(3) Compute
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Ty -1

de ==V V™ gy

X = X + Ay dy
Ak is computed by exact line search .
(4) Update Vi using Al-Bayati, 1991 VM-update.
Vi s, Se Vi N Sk Vi Vi

Sk Vi Sk (Vk 8K

(5) Compute the scaling parameter o, >0 and gz, >0 such that

W, =V, - - Vi Yk

O < U . If wirepresents the column of Wi put Ck = diag [c1, C2, ....,

cn] where
\
i S if |wi| <o
Jwi ‘
Hi ;
¢ =] M it Jwy > O
|wi ‘
N
Q—", Where ¢, =M otherwise
w; k Sk J
(6) Set Vk+1 = Wi Ck
(7) set k =k +1 and go to step (1)
Note that:
1- In the above algorithm
B, =V, V1T
B, =V, V. (10)

=W,y Ciy Wiy k>1

and the update is performed directly on V.

2. Basic Results for Super Linear Convergence
First we define the following quantities to be used in this section:

1 1 1

Ek :G*ZBkG*Z ) Wk =G*2Wk (11)
1 1

§k :GE Sk ) )_/k =G*2yk (12)
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T vl s
M, = Yi Y , M, = _|T< “k (13)
Vi S Sk Sk
Oy = S B S » Cosh, = S Bys By 5 (14)
Sk Sk [5il B 4]

where G~ is the Hessian of f at the minimizer x» .

The limiting behavior of Q, and Cos@k is enough to characterize
the asymptotic rate of convergence of a sequence of iterates {xx} generated
by a quasi-Newton algorithm. Their result which can be seen as a
restatement of the,[12] characterization, is reproduced in the following
lemma.

Lemma (2.1):

Suppose that the sequence of iterates {x«} is generated by algorithm
(1.1) using some positive definite sequence{B«},and that Ax = 1 whenever
this value satisfies Wolfe conditions(4)-(5).If xx — x= then the following
two conditions are equivalent :

(i) The steplength A« = 1 satisfies conditions (4)-(5) for all larg k and the rate
of convergence is superlinear.
(i) lim Cos6, =limd, =1 (15)

k—0 k—o0
Proof: Proof of this lemma can be found in [9]. The next theorem specifies

conditions on the scaling parameters ok and nk that allow ), and COS@k :

produced by Algorithm 1.1, to exhibit the desirable limiting behavior of
Lemma 2.1 . Such conditions involve the following quantities:

R R (16)
1 2 1 2 G..2 wi G.2 wi
= In|G.2 wi| —|G.2 wi| )—(In o2 —o
ve= 3| (|G wi B R e v T AW
and
G N
LR LR G..2 wi G.2 wi ..(17)
e = 2| (In|G.2 wi| —{G.2wi| )—(InnZ L2 —)
il wil [wi|
and

43



Abbas Y. Al-Bayati & Maha S. Al-Salih

2 2

1
G.2 wi

|wi

1

2 2 G.2 wi

...(17a)

A1
G.2 wi

_1
G.2wi

dc=|(In )-(n¢g; ~Cr

iely

)

Jwil

and whether they sum finitely or not. Note that yx and ux need not be
positive. Recall that the sets Ix and J« defined by:

I =(i e[l, n]:|| Wi||<csk)
and
I =(ielt, n]:| wi|> py)
contain the indices of the columns that are scaled down at iteration k.
We are now ready to state the theorem.

Theorem 2.1:

For the quadratic function f, x1, B1, ok and n satisfy the assumptions
in theorem 1.1 . In addition, assume that G is Lipschitz continuous at x». Let
{xx} — x= be generated by Algorithm 1.1; then if

gyk <w (18)
Suy <0 (19)
k=1
3y <o (19a)
k=1

the iterates converge superlinearly (for the case of non-quadratic functions,
see [2] and, [3].

Proof: Let y (B) =tr (B) - In (det (B) then,
Tr (ACAT) = tr (AAT) +tr [(C—1) ATA] and from (11), we have
1 1 1

1
v (By,y) =tr(G.2 W, CZ W, G.2)-Indet(G.2 W, C; W, G.2)
=tr(W, C2 W,]) - In det (W, W) - In det (C?)

1

~ ~ n i
=w (W W)+ X 67 -1)16-2 Wi -Inc]
i=

Then by the definition (9) of ¢i ,
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2 1 2
= > (e} S 2 Gk
¥ Bi) =w (W, W) + [k -1J||G*2 W, |2 -In
" Z W, II° ' W, II°

2 1 2
Nk ) 2 Nk
+ Z -1)||G,k2 W, ||”-1In
idﬂnwi I WP

1

£y [ < 2-1jne;2vm|ﬁ-|n S
Wil Wil

iely
1 )
: 62 Wil
=y (W, W)+ X o — 7 [|G.2 W, |
el Wil
2 1
*2 W 2 Py
-In o} MJF In||G.2 W, |?
Wil
1 .
IG2 Wil 72w 12
+ 2 M- 1GL W |
=y Wil |
2 )
G*Z W 2 Py
-Inn: M+ In||G.2 W, |I?
Wil

1

5 1
2 ||G*2 Wi ||2 ) 2
+ L ||G.2 W |
2.\ Gi W |l

iely
1 .
2 2 -z
-In ﬁMer“G*z W, ”2
Wil
:\V(\TVkWJ)+Yk+Hk+¢k (20)
Since W, WkT is the matrix obtained by updating Bk using the, [1]
formula, which is invariant under the transformation (11) — (14), we have:
v (W, Wl;r):l//(Bk)+(Mk -1In ﬁ:]k -1)

T 4in—
cos 6, cos 6,

(21)
+(1-

) +In cos?®O,
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Therefore, using (21) in (20), we havg:

W B =y B+ (M, -In My 1)+ (L i ey
c0s“ 0, c0s“ 0,

+1n cos?0, +7y, +py + O

=W(§1)+i(|\7|j-|nr’ﬁj-1)+i[(1- G, pn_Ok b (22)
=1 =1

cos’0,  cos’6,

_ K K K
+In coszej]+Z‘1yj + W +Z{¢j
1= 1=

i=1

Now by the following theorem due to [10]. /

Theorem 1.1:

Let x1 be a starting point for which f satisfies eq.(12) and let B1 be a
positive definite starting Hessian approximation. Let {xx} be generated by
the new proposed algorithm with ok and px satisfying eq.(18) and for any
pe(0, 1) 3 a constant B1 > for any k >1 the relation Cos 6; > 1 holds for at
least [P«] values of j € [1, k].

We know that the iterates converge to x= r-linearly. Using this and
the Lipschitz continuity of G at x=, it is not difficult to show, see [9] that:

Zk:(l\7lj-ln i, -1) <oo (23)
j=1

Moreover, the hypothesis of the theorem guarantees that the last two
summations in (22) are bounded above. Therefore, in order for y (B, ,,) to
remain positive as K —> oo, the sum of the nonpositive terms in the square
brackets must also be bounded. This can only be true if:

lim (1-—% +In—% ) lim In cos’d, =0
ko €c0s“0, Cos°0, ko«

Which implies that both @, and (‘,0326k —1. Hence, superlinear

convergence follows from Lemma (2.1) #.

Now we describe a specific and modified implementation of
algorithm 1.1 and make use of the theory developed so far to show that it is
superlinearly convergent for strictly convex objective functions.

New Algorithm:

Step (0) Choose xi1 and a nonsingular and lower matrix Vi ;
setk=1.

Step (1) Terminate if a stopping criterion is satisfied.
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Step (2) Find an orthogonal matrix Qx such that Lk = Vk Qx is a lower
triangular.

Compute :
d =-Ly Ly 9y,
X =X + Ay
Where A, is a steplenghth that satisfies the Wolfe conditions (The
stepsize A, =1 is always tried first and is accepted if admissible).

Compute:

Sk = Xk+1 — Xk
Yk = Ok+1 — Ok
Step (3) Perform the following steps to update Lk to Wk so that W, WkT

become Al-Bayati update of L, LTk as defined in (8):
(3.1) Compute 1, =L} S,
(3.2) Find an orthogonal and lower matrix €, such that
Qe =n/|r|
(3.3) Construct W, ={ws , w5 ,..., WK}, where WK is given by
wk = Yy s =l
I Lk Qk el y i=2,3,...,n
Step (4) Compute the scaling parameters:

S
Itk=1, o7 =qf =YL Y1 =¢2
S1 Y1

Otherwise, cﬁ :%{(n -1 -1|)Gﬁ_1 + 2|l Wik-l ||2}

ie'k—l

where 1., ={ie[1, n]:|| W/ [|<o,.},

1 -
And 1 =Ll Dnia + ZIWHET

ieJk,l

: . k-1
where 3,5 ={i €[L, n]:| W[ >, .}
Construct Ck = diagonal (c1, c2, ..., cn) Where ci is given by:
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Gk M k
ol it IW [l<oy
P it WS>,
Wl
;
Qkk , Where ykyikyk otherwise
(W ] Yk Sk

Step (5) Set k = k + 1 and go to step (1).

3.Numerical Results

In order to asses the value of this new technique, numerical tests on
twenty tests functions were carried out for unconstraint optimization
problems. As a standard for the purpose of comparison, the test functions,
(from general literature) were solved using two different VM-algorithms.

The standard BFGS algorithm.
The new proposed algorithm (which it has been proved to be
superlinear convergent algorithm).

All the numerical results were presented in tables (1)-(2). All the
algorithms  terminate whenever g, g, , <1x10°and the two

algorithms use exactly the same line search strategy, namely, the cubic
fitting technique directly adapted from that published by [8].

Analysis of the two tables shows that the new proposed
VM-algorithm is superior to the standard BFGS algorithm. The superiority
of the new algorithm is clear for high dimensionality test problems because
of the automatic scaling strategy.
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Table (1): Comparison of the new algorithm with the standard BFGS
for2<n<10.

IT N New algorithm Standard BFGS |

est Function

NOI

| NOF

NOI

4

24

8

22

60

19

7

34

8

12

41

35

16

72

19

20

72

30

26

87

21

23

79

25

17

79

20

NI NN G N FN TN

9

19

9

Percentage improvement of the new algorithm compared with the
standard BFGS algorithm

100 % NOI
124.358

100 % NOF
120.282

Table (2): Comparison of the new algorithm with the standard BFGS
for 100 <n<900.

New algorithm Standard BFGS

Test Function

NOI

| NOF

NOI

| NOF

Powell

29

89

34

107

Wood

122

340

232

747

Rosen

18

55

244

767

Miele

29

91

31

107

Dixon

231

644

244

644

Cubic

10

39

13

39

Wolfe

78

169

84

169

Powell

32

100

39

119

Cantrel

15

95

12

61

Miele

Total | 1595 f1715  fo66 _ [2869 |

31

93

49

33

109
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Percentage improvement of the new algorithm compared to standard

BFGS algorithm
I New 100 % NOI 100 % NOF I

BFGS 162.352 167.288

4. Final Remarks and Conclusions

We have described in this paper the conditions under which new
automatic self-scaling algorithms based on the direct form of [1] VM-
Update can be proved to be superlinearly convergent. Also some sort of
numerical experiments have been done to know the effectiveness of the new
proposed algorithm.

It is also possible to describe another similar algorithm based on the
inverse scaled-BFGS algorithm. A column scaling algorithm which was
proposed by [15] may be modified and implemented with this family of
algorithms.

However, values of ok, uk selected in the new algorithm are
arbitrary. It might occasionally be better to increase ok and to decrease pi.
In any case, the theory developed in this paper will prove to be useful for
analyzing the super linear convergence of this algorithm.

Finally this, idea may be extended to constrained optimization
problems, see [5] for more details and for non-quadratic models see [4].
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