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Abstract 

In this paper, a new self-scaling VM-algorithm for unconstrained 

non-linear optimization is investigated. Some theoretical and experimental 

results are given on the scaling technique, which guarantee the Super-linear 

of the new proposed algorithm.  

Keywords: unconstrained non-linear optimization, self-scaling VM-

algorithm. 

 خوارزمية ذاتية فوق الخطية للمتري المتغير ذاتي القياس
 مهى صلاح الصالح                                                  عباس يونس البياتي     

 اق كلية علوم الحاسوب والرياضيات/جامعة الموصل/العر 
 09/06/2004تاريخ قبول البحث :                    12/11/2003تاريخ استلام البحث: 

 
 الملخص

فييه اييلا التحييل طيي  ال خييرق يلييد دواللمييية جمتييم  للم يير  الم  خيير علييد وفيي   ط  ييية داصيية 

يية بالقياس اللاطه. كما طمت دلاسة الجواني  ال رريية والعمليية للمةيولة وال يه طلكيم الةيرعة فيوق ال خ

 .لل واللمية الجمتم  الم  رحة

 .القياسذاطه  لم ر  الم  خراالأمثلية اللادخية غخر الم خم ، الكلمات المفتاحية: 
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1.Introduction 

Conjugate Gradient (CG) methods were first used to solve the 

general unconstrained problem by Fletcher and Reeves [14]. Their algorithm 

(or simple variants) is still frequently used, especially for problems with a 

large number of variables since they require only a few vectors of length n 

to be stored. 
Given a symmetric positive definite matrix G, the finite set of non-

null vectors {d1, d2, …, dk} are said to form a conjugate set if  

ji  allfor     0Gd d j
T
i =  

 An important class of quasi-Newton methods for solving the 

unconstrained optimization problem, [13] 

 

f(x), min
nRx

  (1) 

was proposed by [7]. It consists f iterations of the form 

kkk1k dxx +=+          k>1,  (2) 

where 

k
1

kk gBd −−=   (3) 

Here k is a step length parameter satisfies the Wolfe conditions with exact 

line search strategy, i.e. 

k
T
kkkkkk dg )x(f)dx(f ++   (4) 

k
T
kk

T
kkk dg d)dx(g +   (5) 

for  
2

1
      0    and 1       , and gk denotes the gradient of f at xk.  

The Hessian approximation Bk is updated by means of the formula 
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where  is a scalar, yk = gk+1-gk, sk = xk+1-xk and  
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The choice of the parameter k is important, since it can greatly 

affect the performance of the methods. The BFGS method corresponds to 

k = 0. 
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Variable metric (VM) methods were originally proposed by Davidon 

[11]. Subsequently, many authors have extended the theory and 

practice,[12] for a survey. The search direction in a VM- method is the 

solution of the system of equations: 

kkk gHd −=   

where the matrix Hk is an approximation to 
1

kG −
, the inverse Hessian of the 

function f(x). and:  

k
T
kkk

T
k y  v vG v    

This relationship is exact if the non-linear function f is exactly equal 

q. The new approximation for the inverse Hessian Hk+1 is chosen to ensure 

that   

kkk1k  vy H =+
  

where k is a scalar; generally for the quasi-Newton (QN) method 1k =  

and hence (3.15) reduces  to  

Hk+1 yk = vk   (called the QN-condition)  

And  

Hk+1 = Hk + Ck  

The matrix Ck is therefore, the update to Hk . 

For the next iteration Bk+1 is updated by Al-Bayati’s VM-update, i.e. 

k
T
k2

k
T
k

kk
T
k

kk
T
k

k
T
kkk

k1k yy . 
)ys(

yBs

sBs

BssB
BB +−=+

  (8) 

See [1] for more details and properties of this algorithm. 
 

 

Algorithm 1.1:, [6] 
 

(1) For a starting point x1 and non singular matrix V1 ; set k =1. 

(2) Terminate if +  ,   g 1k is a small positive real number. 

(3) Compute 
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kk
T

kk gVVd   1−−=  

kkkk dxx  1 +=+  

k is computed by exact line search . 

(4) Update Vk using Al-Bayati, 1991 VM-update.  

T
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(5) Compute the scaling parameter 0  k   and 0  k  such that 

kk   . If wi represents the column of Wk put Ck = diag [c1 , c2 , …., 

cn] where  
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(6) Set Vk+1 = Wk Ck  

(7) set k = k +1 and go to step (1) 

 

Note that:  

1- In the above algorithm 
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  (10) 

 

and the update is performed directly on Vk . 

 

 

2. Basic Results for Super Linear Convergence 

 First we define the following quantities to be used in this section: 

2

1

*k
2

1

*k GBGB
−−

=  , 
k

2

1

*k WGW
−

=   (11) 
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where G* is the Hessian of f at the minimizer x* . 

 The limiting behavior of kq and kCos is enough to characterize 

the asymptotic rate of convergence of a sequence of iterates {xk} generated 

by a quasi-Newton algorithm. Their result which can be seen as a 

restatement of the,[12] characterization, is reproduced in the following 

lemma.  

Lemma (2.1): 

Suppose that the sequence of iterates {xk} is generated by algorithm 

(1.1) using some positive definite sequence{Bk},and that k = 1 whenever 

this value satisfies Wolfe conditions(4)-(5).If xk → x* then the following 

two conditions are equivalent : 

(i) The steplength k = 1 satisfies conditions (4)-(5) for all larg k and the rate 

of convergence is superlinear. 

(ii) 1q Cos k
k

k
k

limlim ==
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  (15) 

Proof: Proof of this lemma can be found in [9]. The next theorem specifies 

conditions on the scaling parameters k and k that allow kq and kCos , 

produced by Algorithm 1.1, to exhibit the desirable limiting behavior of 

Lemma 2.1 . Such conditions involve the following quantities: 
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and  
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
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and whether they sum finitely or not. Note that k and k need not be 

positive. Recall that the sets Ik and Jk defined by: 

  ( )kik σ w :n 1,  iI =   

and  

 ( )kik μ w :n 1,  iJ =   

contain the indices of the columns that are scaled down at iteration k. 

We are now ready to state the theorem. 

Theorem 2.1: 

 For the quadratic function f, x1, B1, k and k satisfy the assumptions 

in theorem 1.1 . In addition, assume that G is Lipschitz continuous at x*. Let 

{xk} → x* be generated by Algorithm 1.1; then if  
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the iterates converge superlinearly (for the case of non-quadratic functions, 

see [2] and, [3]. 

Proof: Let  (B) = tr (B) -  ln (det (B) then,  

Tr (ACAT) = tr (AAT) + tr [(C – I) ATA]  and from (11), we have 
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Then by the definition (9) of ci ,  
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 Therefore, using (21) in (20), we have: 

jkkk
2

k
2

k

k
2

k
kkk1 k 

    
~

cosln                   

 )~
cos

q~
ln   ~

cos

q~
 - (1  1) - m~ln  - M

~
(  )B

~
(   )B

~
( 

++++


+


++= +





===

==

++++


+


++=

k

1  j

j

k

1  j

j

k

1  j

jj
2

k

1  j k
2

k

k
2

k
k

1  j

jj1

     ]
~

cosln                   

)~
cos

q~
ln   ~

cos

q~
 - (1[  1) - m~ln  - M

~
(  )B

~
(                 

Now by the following theorem due to [10].  

Theorem 1.1:  

Let x1 be a starting point for which f satisfies eq.(12) and let B1 be a 

positive definite starting Hessian approximation. Let {xk} be generated by 

the new proposed algorithm with k and k satisfying eq.(18) and for any 

(0, 1)  a constant 1  for any k >1 the relation Cos j  1 holds for at 

least [Pk] values of j  [1, k]. 

We know that the iterates converge to x* r-linearly. Using this and 

the Lipschitz continuity of G at x* , it is not difficult to show, see [9] that:  
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Moreover, the hypothesis of the theorem guarantees that the last two 

summations in (22) are bounded above. Therefore, in order for )B
~
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remain positive as →  k , the sum of the nonpositive terms in the square 

brackets must also be bounded. This can only be true if:  
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Which implies that both kq~  and 1  
~

cos k
2 → . Hence, superlinear 

convergence follows from Lemma (2.1) #.  

Now we describe a specific and modified implementation of 

algorithm 1.1 and make use of the theory developed so far to show that it is 

superlinearly convergent for strictly convex objective functions.  

 
New Algorithm: 

Step (0) Choose x1 and a nonsingular and lower matrix V1 ;  

set k = 1. 

Step  (1) Terminate if a stopping criterion is satisfied.  

(22) 
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Step  (2) Find an orthogonal matrix Qk such that Lk = Vk Qk is a lower 

triangular.  

Compute :  

k
1 -
k

T -
kk g L L -  d = ,  

 d   x x kkk1k +=+  

Where k  is a steplenghth that satisfies the Wolfe conditions (The 

stepsize 1  k =  is always tried first and is accepted if admissible).  

Compute:  

sk = xk+1 – xk  

yk = gk+1 – gk  

Step (3) Perform the following steps to update Lk to Wk so that 
T
kk  WW  

become Al-Bayati update of 
T
kk L L as defined in (8):  
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Construct Ck = diagonal (c1 , c2 , … , cn) where ci is given by:  
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Compute: kk1k C  W = +   

 

Step (5) Set k = k + 1 and go to step (1).  

 
3.Numerical Results 

In order to asses the value of this new technique, numerical tests on 

twenty tests functions were carried out for unconstraint optimization 

problems. As a standard for the purpose of comparison, the test functions, 

(from general literature) were solved using two different VM-algorithms. 

(i) The standard BFGS algorithm. 

(ii) The new proposed algorithm (which it has been proved to be 

superlinear convergent algorithm). 

All the numerical results were presented in tables (1)-(2). All the 

algorithms terminate whenever 5
1k

T
1k 101g g −

++  and the two 

algorithms use exactly the same line search strategy, namely, the cubic 

fitting technique directly adapted from that published by [8]. 

Analysis of the two tables shows that the new proposed  

VM-algorithm is superior to the standard BFGS algorithm. The superiority 

of the new algorithm is clear for high dimensionality test problems because 

of the automatic scaling strategy. 
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Table (1): Comparison of the new algorithm with the standard BFGS 

for 2 < n < 10 . 

Test Function N 
New algorithm Standard BFGS 

NOI NOF NOI NOF 

OSP 2 4 24 8 44 

Helical 3 22 60 19 59 

Cubic  4 7 34 8 26 

Rosen 4 12 41 35 106 

Powell  4 16 72 19 79 

Wood 4 20 72 30 84 

NON 4 26 87 21 66 

Miele 4 23 79 25 94 

OSP 10 17 79 20 105 

Full 10 9 19 9 19 

Total 156 567 194 682 

Percentage improvement of the new algorithm compared with the 

standard BFGS algorithm 

New 100 % NOI 100 % NOF 

BFGS 124.358 120.282 

 
Table (2): Comparison of the new algorithm with the standard BFGS 

for 100 < n < 900 . 

Test Function N 
New algorithm Standard BFGS 

NOI NOF NOI NOF 

Powell 100 29 89 34 107 

Wood 100 122 340 232 747 

Rosen 100 18 55 244 767 

Miele 100 29 91 31 107 

Dixon 300 231 644 244 644 

Cubic 700 10 39 13 39 

Wolfe 800 78 169 84 169 

Powell 800 32 100 39 119 

Cantrel 900 15 95 12 61 

Miele 900 31 93 33 109 

Total  595 1715 966 2869 
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Percentage improvement of the new algorithm compared to standard 

BFGS algorithm 

New 100 % NOI 100 % NOF 

BFGS 162.352 167.288 

 
4. Final Remarks and Conclusions  
 

We have described in this paper the conditions under which new 

automatic self-scaling algorithms based on the direct form of [1] VM-

Update can be proved to be superlinearly convergent. Also some sort of 

numerical experiments have been done to know the effectiveness of the new 

proposed algorithm.  
It is also possible to describe another similar algorithm based on the 

inverse scaled-BFGS algorithm. A column scaling algorithm which was 

proposed by [15] may be modified and implemented with this family of 

algorithms. 

However, values of k, k selected in the new algorithm are 

arbitrary. It might occasionally be better to increase k and to decrease k. 

In any case, the theory developed in this paper will prove to be useful for 

analyzing the super linear convergence of this algorithm. 

Finally this, idea may be extended to constrained optimization 

problems, see [5] for more details and for non-quadratic models see [4]. 
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