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Abstract:

In this paper, we use the Operational Matrices generated from Haar
Wavelets to solve Nonlinear Volterra Integral Equations System of the
Second Kind. We found that high accuracy of the results in this method in the
solution of nonlinear integral equations is realized even in case of the small
capacity matrices, but the accuracy of the solutions increases when the
capacity of the matrices being used gets larger.

As for its efficiency it is tested by solving two examples for which the
exact solution is known. This allows us to estimate the More Accuracy of the
obtained numerical results.
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1-Introduction:

Many problems from physics and other disciplines lead to linear or nonlinear
integral equations, these equations have applications in physics, chemistry or
biology.

In recent years, many different methods have been used to approximate
the solution of linear or nonlinear Volterra integral equations system. Tricomi
[7], in his book introduced the classical method of successive approximations
for nonlinear Volterra integral equations. Brunner [1] applied a collocation-
type method to nonlinear Volterra equations and integro-differential equations
and discussed its connection with the iterated collocation method. Maleknjad,
Sohrab, Rostam [5] are applied Chebyshev polynomials for solving of
nonlinear Volterraintegra equations of the second kind. Fard and Tahmashi,
[2] are used a numerical method based upon power series to solve nonlinear
Volterra integral equations system of the second kind, this method gives an
approximate solution as the Taylor expansion.

Wu and Chen (2003) [8] are studied the numerical solution for partia
differential equations of first order via operational matrices , they are using
the Haar wavelets in the solution with constant initial and boundary
conditions.

Wu and Chen (2004) [9] are studied the numerical solution for
fractional calculus and the fractional differential equations by using the
operational matrices of orthogonal functions. The fractional derivatives of the
four typical functions and two classical fractiona differential equations
solved by the new method and they are compared the results with the exact
solutions, they are found the solutions by this method is simple and computer
oriented.

Lepik and Tamme (2007) [4] are derived the solution of nonlinear
Fredholm integral equations via the Haar wavelet method, they are find that
the main benefits of the Haar wavelet method are sparse representation, fast
transformation, and possibility of implementation of fast agorithms
especially if matrix representation is used.

Lepik Uio (2009) [3] is studied application of the Haar wavelet
transform to solving integral and differential equations, he was to demonstrate
that the Haar wavelet method is a powerful tool for solving different types of
integral equations and partial differential equations. The method with far less
degrees of freedom and with smaller CPU time provides better solutions
classical ones.

In this paper, we will study the numerical solution for nonlinear
Volterra integral equations system of the second kind by the operational
matrices of Haar wavelets method and we will compare the results of this
method with the exact solution.
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In this search, we consider the second kind Volterraintegral equations system
of the from:

Y. (%) =9, (x) + i J.ﬂ“lj ky; (%t) (y; (1) P dt,

i=lo

V200 = 0,00+ 3[4, oy (1) (y, @)™ e, ()

i=lo

Y09 = 8,00 + [ 2 ke O (v (@)

where, isareal constant, and isanonnegative integer. Moreover, in
eguation (1) the function and the kernel are given and assumed to be
sufficiently differentiable with respect to all their arguments on the interval .
Also, isthe solution to be determined.
Haar wavelets have become an increasingly popular tool in the computational
sciences. They have had numerous applications in a wide range of areas such
as signal analysis, data compression and many otherg[8].

Using the operational matrix of an orthogonal function to perform
integration for solving, identifying and optimizing a linear dynamic system
has several advantages. (1) the method is computer oriented, thus solving
higher order differential equation becomes a matter of dimension increasing;
(2) the solution is a multi-resolution type and (3) the answer is convergent,
even the size of increment isvery large [8,9].

2- The operational matrices and Haar wavelets:

The main characteristic of the operational method is to convert a
differential equation into an algebraic one, and the core is the operationa
matrix for integration. The integral property of the basic orthonormal matrix,

o(t) . We write the following approximation:
ttt

T [ Jo(ENc) = Qo) L

000

where o(t)=[¢,(t) @(t) ... &,,(t)] in which the elements @,(t).d,(t)....d,,.(t)
are the discrete representation of the basis functions which are orthogonal on
theinterval [0,1) and Q, is the operational matrix for integration of ¢(t) [8,9].
The operational matrix Q, of an orthogonal matrix ¢(t) can be expressed by:
[Q,]=[0][Qs )-6]" .3

where [Q, ]isthe operational matrix of the block pulse function:
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12 1 17
0 U2 1 1
QBm=% 0o .. v2 .. 1 ...(4)
0 .. 0 12 1
0 .. .. 0 2| _

If the transform matrix [¢] is unitary ,that is [6]* = [4]", then the equation (3)
can be rewritten as[8,9]:
[Q,]=[0]-[Qc - o' ...(5)

The Haar functions are an orthogonal family of switched rectangular

waveforms where amplitudes can differ from one function to another. They
are defined in the interval [0,1] by [8,9]:

“Ym
J
2 ko1 kol
, 2 2
e kL2 _k ...(6)
h(t)=m 2 2
0 otherwise in [0

where i=0,1,2,.....,m-1, m=2* and a IS a positive integer. J and k represent
the integer decomposition of theindex i ,i.e. i=2"+k-1.
Theoreticaly, this set of functions is complete. h,(t) is called the scaling

function and h,(t) the mother wavelet, such that from the mother wavelet
h,(t), compression and translation are performed to obtain h,(t) and h,(t).

Any function u(x,t) whichissquare integrablein theinterval o<t <1and
0<x <1can be expanded into Haar series by:

u(x,t) = mZﬁlmzilcwlﬁli(X)hJ(t) --(7)

i=0 J=0

where ¢, = ]u(x,t)hi(x)dx : ]u(x,t)hj(t)dt.

The equation (7) can be written into the matrices form by:

u(x,t) = H'(x)-C- H(t) ...(8)
where

[Coo  Cor oo .o Coms |

Co Cu v .. Cia

[c]= P

Coso Cone o o Coana
Is the coefficient matrix of u(x,t) calculated by:
[C]=[H]-[u]-[H] (9
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For deriving the operational matrix of Haar wavelets, we let []=[H] in the
equation (5), and obtain:

[QH]:[H]‘[QB]'[H]T (10)
where [Q,, ]is the operational matrix for integration of [H].

For example, the operational matrix of the Haar wavelet in the case of m=4 is
given by:

[QH ]: [H ]4*4 ) [QB]' [H ]2*4

1 01 1 1 1 1M1 1 1 1
2 2 2 2 stz 7 032 3
11 1 1 11 1
:? El_i_igoilllg 51_5_5
1
e tm
_o 0 57 _oooz_o 0 57
[ 05 -025 -00884 —-0.0884
0.25 0  -008%% 0.0884
“|o.0884 0.0884 0 0
100884 -00884 0O 0

Now, by using the equation (2) and the integration of equation (8) with
respect to variablet yields [8]:

]u(x,t)dt = tjHT(x)-Cu-H(t) dt=H"-Cu- tjH(t) dt

=[H]"-[cu] [Qu]-[H]

Further integration with respect to variable x gives:

.11

:ju(x,t)dx = :jHT(X)-CU-H(t) dx = :JHT(X) dx - Cu-[H] ...(12)
=[H]"-[Qu] -[cu]-[H]

3- Numerical solutions:
We will use the operational matrices of the Haar wavelets to solve
nonlinear system (1).
Let
Uy (%, 8) = kg (1) - (y; () ™

Upj (X't)zkzj(.x’t)'(yj(t)) " ...(13)

Unj (1) = kq (1) - (y; ) ™
suchthat j=12..n.
by the equation (8), we can write the equation (13) as Haar matrix, that is:
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U (X t)=HT(x)-Cy; -H()
Up; (X )=HT(X)-Cy; -H(t)

‘ (14
Upj () =HT(x)-Cpj - H()
such that j=12..n , ¢,;.C,;....C,; are the coefficient matrices of uj;,u,;....u,;
respectively and calculated by using the equation (9), we get:
Cyj =H()-Uyg;(xt)-HT (t)
. :H(X)'Uézj(x’t)'HT(t) ...(19)
Coj =H)-Upj(x)-HT (1)
where
kyj (%0:t0) (Y] (to))™ kpj (X0, 1) (Y )™ ke (X0, tma) (Y (tma))™
Uy, = kyj (%1, t0) (Y (to))plj kyj (%4, t) (Y ('[1))[)lj kg (O tn) (Y (th))plj
_klj (Xm-1:t0) (Y (to))p” kyj (Xne1,t) (Y (tl))plj Ky (X tmea) (Y (th))plj i
i kyj (%0.t0) (Y] (to))pnj Knj (X0, 1) (Y ('[1))pnj o Knj (%0 tma) (Y (tnml))pnj |
U.. — Knj (%0, to) (Y; (to))lonj knj (. t1) (Y; (tl))pnj o Knj (0 ta) (Y ('[rm))pnj
nl : : : an
| Knj (%m1:t0) (¥} (fo)) i Knj (Xma 1) (Y; )™ - Knj (X2 tmea) (Y (t0) ™ Jm
d
tl :i+|_
2Zm m )
1 i=0,1,2,3,... ...(16)
X =—+—
2m m

Now, by using the equation (13), the equation (1) becomes:
V100 = 0109+ [y uyy (x1) ek,

i=lo

V200 = 0200+ )" 22 gy (x 1) ct, ..(17)

i=lo

Yn(9 =80 (0+ D [ Uy (1)

i=lo
suchthat j=12..n.

We transform the system (17) into the matrices form by using the
equation (14), we get:
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n X
Y1:61+Zj/11j HT(%)-Cyj -H(D) dt,
i=1lo

Y, =G+ [25 HT(0-Coj -HO o, ...(18)

i=lo

n X )
Y,=G,+ Y jznj HT()-Cp; -H (D) dt,
i=lo

suchthat H™ (x) and H() are the Haar matrices and:

Vilto) Yalt) - Yaltma)
_ Yilte) walt) - Yaltma)

Y1
Yilte) Yalty) -+ Yaltma) |,
Yn (tO) Yn (tl) “* Yn (tm—l)

Y. = Yn (tO) Yn (tl) “ Yn (tm—l)

yn(tO) yn(tl) yn(tm—l) mxm
G1,G;,..., Gy are matrices such that the diagonal elements of each matrix
G i=12..n areknown that iswhen x =t , but other elements are unknown:

0 (%to)  Glot) o G(Xostma)
G, = 91(X:11t0) 91(X:1,tl) 91(X1;tnm1)
G (Xmarto) GXmat) - GKnatma) |
gn(XO’tO) gn(x01tl) gn(XO’tm—l)
G - On(4 o)  Gn(xut) - Gn(Xetha)
n— : : :

On(Xmarto) In(Xmarts) o GnXimartma) |

The functions 0;(X),92(X),....9n(X) are found by integrating the
functions u;; (xt),u,; (xt)....u,; (x,t) from (O to x) with respect to (t) and adding
the  functions  Yi(X),Y2(X),.. Yo(X),  therefore, the  functions
01(X),92(X),....dn(X) are consisting of two variables (t) and (X)
0;(X,1),95(x1),..., 9, (X,t) but by substituting the integration boundaries they
become one variable functions; that is:
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gl()g’ti):gl()g) V)ﬁ =t
: ...(19)
g.(%.t)=0.(%)  VX=t

Now, by using the equation (11), the system (18) becomes:

n
Y, =Gl+z,11j HT-Cy;-Q-H
j=1

Y, =G, +) Ay H'-Cyj-Q-H ...(20)

i=1

o
Y, =Gy + D Ay H' -Cpj-Q-H
j=L

by substitute the equation (15) in the system (20), then:

n
Y, =G+ ) AUy -HT-Q-H
j=1

Y,=Gy+ ) Apj-Up H-Q-H ...(22)

j=1

Yo =Gy +> 4y Uy HT-QH
j=1

To find the values of the matrices Yi,Y,..-, ¥n which have 2™ of the
elements respectively, we solve the system (21) which gives nonlinear system
of the equations such that the equations number is equal to the variables
number and we can solved them by Newton-Raphson system method .
4- [llustrating Examples:

For illustrating the numerical solution for the above system, consider

the following example.

Example 1:
We consider the following nonlinear integral equations:

Y200 =939 + k(1) ¥ (©) dt + [k, (x,) y3 (1) cit

N , ...(22)
Y00 = 0,00+ [ky (1) Y7 (1) dt + [k, (1) Y3 (1) clt
0 0
where
" X_x_5_11x6
90| _ 4 30
{gz(x)}_ n (29)
12 6
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and

ki (1) kyo(X,1) Xt x+t

{kzl(X,t) kzz(x,t)} ot L ..(24)

The exact solution for equation (22) are:

e/

Y200 X

the system (22) can be solved by using numerical solution described in this
paper and we get:

| X ya(x) Error Ya(X) Exact=x* Error I

1/8=0.125 | 0.125029138072377 2.9138e-005 0.015630106212422 0.015625 5.1062e-006

3/8=0.375 | 0.376704539897345 0.0017 0.141231766539293 0.140625 6.0677e-004

5/8=0.625 | 0.637207738582420 0.0122 0.395383102043036 0.390625 0.0048

7/8=0.875 | 0.932483521157945 0.0575 0.784288165537893 0.765625 0.0187 I

Table 1. Comparison between the real solution and the numerical solution and to found y;(x), y2(x) the
amount of error for Example(1) when m=4.

when the dimension of the matrices increase then the numerical solution
converges towards the exact solution as shown in the table (2) such that the
dimensions of the matrices are m=8.

y1(X) Error Ya(X) Exact=x? Error

0.062500812605673 8.1261e-7 0.003905772929912 0.00390625 4.77070088e-7

0.187538573673104 3.8574e-5 0.035153537434621 0.03515625 2.712565379e-6

0.312728525731551 2.2853e-4 0.097726399249249 0.09765625 7.0149249249¢-5

0.438267582560184 7.6758e-4 0.191708324679084 0.19140625 3.02074679084e-4

0.564476892276982 0.0020 0.317204874929301 0.31640625 7.98624929301e-4

0.691925427919539 0.0044 0.474373022641958 0.47265625 1.71677264195e-3

0.821751345767716 0.0093 0.663481937615570 0.66015625 3.32568761557e-3

0.956518518319132 0.0190 0.885044973971101 0.87890625 6.13872397110e-3 I

Table 2: The numerical solution to found y4(X), y2(x) and Comparison with the exact solution and the
amount of error for Example(1) when m=8.
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Example 2:
Solve a system of nonlinear integral equations:

i 00 = 9,00 + [k (6 1) v (0) dt = [k, (x,t) y7 (1) dt

Y2 (X) =9, (x) = [ko (1) y7 (O) dt + [k, (X, 1) yE (1) ot

where

1 9,(%)
and

LY2(X)

[k (X 1) kyp(X,t)

Xt
ka1 (X t) kzz(xyt)}: X—t lx

The exact solution for equation (26) are:

[y (x) ] [sec (x)
| tan (x)

_gl(X)}{ sec (x) - x}

3tan (x) — X

X+t

..(25)

...(26)

.(27)

the system (25) can be solved by using numerical solution described in this
paper and we get:

yi(x)

Exact=
sec(x)

Error

ya(X)

Exact=
tan(x)

Error

1.007971079548726

1.007863687880318

1.0739166840e-4

0.123071377092145

0.125655136575131

2.583759482986e-3

1.076148143268895

1.074682223392077

1.46591987681e-3

0.384819092485131

0.393626575925633

8.807483440502e-3

1.242362033442251

1.233101698397970

9.26033504428e-3

0.700797540748446

0.721484440990904

2.068690024245¢-2

1.615750611392769

1.560070049119026

5.56805622737e-2

1.136500967619520

1.197421629234348

6.092066161482¢-2

Table 3: The numerical solution to found y;(x), y2(x) and Comparison with the exact solution and the
amount of error for Example(2) when m=4.

y1(x)

Exact=
sec(X)

Error

ya(X)

Exact=
tan(x)

Error

1.001959202221292

1.001956308972
237

2.893249055e-6

0.062257135583389

0.06258150756
6275

3.24371982886e-4

1.017873025426493

1.017839351629
227

3.3673797266e-5

0.188730758236102

0.18972861071
8059

9.97852481957e-4

1.051049586224071

1.050897103093
027

1.52483131044e-4

0.321326127396855

0.32308624435
1746

1.760116954891e-3

1.104446257276087

1.103979789991
509

4.66467284578e-4

0.465008108863209

0.46773002545
2392

2.721916589183e-3

1.183325126267815

1.182138596185
575

1.18653008224e-3

0.626343630602862

0.63043767383
5885

4.094043233023e-3

1.296715970919937

1.293937347137
912

2.778623782025e-3

0.814831774602729

0.82114180158
9894

6.310026987165e-3

1.460551998217057

1.454152966031
519

6.399032185538e-3

1.045374140380485

1.05572763941
1920

1.0353499031435e-2

1.705103947959705

1.689745563340
660

1.535838461904e-2
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a

Table 4: The numerical solution to found y1(X), y2(x) and Comparison with the exact solution and the
amount of error for Example(2) when m=8.

Figure 1: Comparison between the exact solution and the numerical solution of y1(x) when m=4and m=8for Example 1

0.95F T

****** y1(x) when m=4 .
exact solution =X

— — yl(xX) when m=8.

Il Il Il Il
0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
x

Figure 2: Comparison between the exact solution and the numerical solution of y2(x) when m=4 and m=8 for Example 1.

77777 y2(x) when m=4
exact solution =x2

— — y2(x) when m=8

0.45 /;,:’/ _
0.4+ / _

L

I I I I I I I I
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
x
Figure 3: Comparison between the exact solution and the numerical solution of y1(x) when m=4 and m=8 Example 2.
1.8
1.7 — — yl1l(X) when m=4. B
exact solution=sec(x)
1.6 —
— - — yl(X) when m=8.
1.5 —
> 1.4f B
1.3 —
1.2+ —
1.1 _— ,
I
_— —
i —
1 _ I I I I I I I
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
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Figure 4: Comparison between the exact solution and the numerical solution of y2(x) when m=4 and m=8 Example 2.

—— — y2(x) when m=4.
1.2 //,
exact sol uti on=tan(x) / //
1H e el i
— — —  y(xX) when m=8. et
e
/ ,///
o8l - - i
> - /
0.6~ — e 4
/ _—
/ ////
0.4 _— - i
_— ///’/
/ ////
0.20 — - i
/ _ _—
—
0] 1

5-Conclusions:

In this paper, We are using the operational matrices of the Haar
wavelets method for solving non linear volterra integral equations system of
the second kind. And compare the results with the exact solutions, by solving
two examples when m=4 and m=8. Note that the high accuracy of numerica
solution increases is directly proportional to increase in dimensions of
operational matrices and note that converges towards the exact solution as
shown in the tables (1),(2),(3)& (4)and figures(1),(2),(3) &(4). Then for better
results, using the greater m is recommended. The present method reduces an
numerical integral equations system into a set of algebraic equations which its
solve by using Newton-Raphson method.
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