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Abstract: 
In this paper, we use the Operational Matrices generated from Haar 

Wavelets to solve Nonlinear Volterra Integral Equations System of the 
Second Kind. We found that high accuracy of the results in this method in the 
solution of nonlinear integral equations is realized even in case of the small 
capacity matrices, but the accuracy of the solutions increases when the 
capacity of the matrices being used gets larger.  

As for its efficiency it is tested by solving two examples for which the 
exact solution is known. This allows us to estimate the More Accuracy of the 
obtained numerical results.  
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1-Introduction: 
Many problems from physics and other disciplines lead to linear or nonlinear 
integral equations, these equations have applications in physics, chemistry or 
biology.  

In recent years, many different methods have been used to approximate 
the solution of linear or nonlinear Volterra integral equations system. Tricomi 
[7], in his book introduced the classical method of successive approximations 
for nonlinear Volterra integral equations. Brunner [1] applied a collocation-
type method to nonlinear Volterra equations and integro-differential equations 
and discussed its connection with the iterated collocation method. Maleknjad, 
Sohrab, Rostam [5] are applied Chebyshev polynomials for solving of 
nonlinear Volterra integral equations of the second kind. Fard  and Tahmasbi, 
[2] are used a numerical method based upon power series to solve nonlinear 
Volterra integral equations system of the second kind, this method gives an 
approximate solution as the Taylor expansion.    

Wu and Chen (2003) [8] are studied the numerical solution for partial 
differential equations of first order via operational matrices , they are using 
the Haar wavelets in the solution with constant initial and boundary 
conditions.  

Wu and Chen (2004) [9] are studied the numerical solution for 
fractional calculus and the fractional differential equations by using the 
operational matrices of orthogonal functions. The fractional derivatives of the 
four typical functions and two classical fractional differential equations 
solved by the new method and they are compared the results with the exact 
solutions, they are found the solutions by this method is simple and computer 
oriented.  

Lepik and Tamme (2007) [4] are derived the solution of nonlinear 
Fredholm integral equations via the Haar wavelet method, they are find that 
the main benefits of the Haar wavelet method are sparse representation, fast 
transformation, and possibility of implementation of fast algorithms 
especially if matrix representation is used.  

Lepik Uio (2009) [3] is studied application of the Haar wavelet 
transform to solving integral and differential equations, he was to demonstrate 
that the Haar wavelet method is a powerful tool for solving different types of 
integral equations and partial differential equations. The method with far less 
degrees of freedom and with smaller CPU time provides better solutions 
classical ones.  

In this paper, we will study the numerical solution for nonlinear 
Volterra integral equations system of the second kind by the operational 
matrices of Haar wavelets method and we will compare the results of this 
method with the exact solution. 
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In this search, we consider the second kind Volterra integral equations system 
of the from:      
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where,   is a real constant, and   is a nonnegative integer. Moreover, in 
equation (1) the function   and the kernel   are given and assumed to be 
sufficiently differentiable with respect to all their arguments on the interval  . 
Also,   is the solution to be determined. 
Haar wavelets have become an increasingly popular tool in the computational 
sciences. They have had numerous applications in a wide range of areas such 
as signal analysis, data compression and many others[8].  

Using the operational matrix of an orthogonal function to perform 
integration for solving, identifying and optimizing a linear dynamic system 
has several advantages: (1) the method is computer oriented, thus solving 
higher order differential equation becomes a matter of dimension increasing; 
(2) the solution is a multi-resolution type and (3) the answer is convergent, 
even the size of increment is very large [8,9].  

2- The operational matrices and Haar wavelets: 
The main characteristic of the operational method is to convert a 

differential equation into an algebraic one, and the core is the operational 
matrix for integration. The integral property of the basic orthonormal matrix, 

t  . We write the following approximation: 
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where T
1m10 tttt in which the elements t,,t,t 1m10

 

are the discrete representation of the basis functions which are orthogonal on 
the interval [0,1) and Q is the operational matrix for integration of t  [8,9]. 

The operational matrix Q  of an orthogonal matrix t  can be expressed by: 
1

BQQ

        

(3) 

where BQ is the operational matrix of the block pulse function: 
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If the transform matrix  is unitary ,that is T1 , then the equation (3) 
can be rewritten as [8,9]: 

T
BQQ

       

     (5)  

The Haar functions are an orthogonal family of switched rectangular 
waveforms where amplitudes can differ from one function to another. They 
are defined in the interval [0,1] by [8,9]: 
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where i=0,1,2, ..,m-1, 2m

 

and 

 

is a positive integer. J and k represent 
the integer decomposition of the index i , i.e. 1k2i J . 
Theoretically, this set of functions is complete. th0 is called the scaling 
function and th1 the mother wavelet, such that from the mother wavelet 

th1 , compression and translation are performed to obtain th2  and th3 .  
Any function ),( txu  which is square integrable in the interval 1t0 and 
1x0 can be expanded into Haar series by: 
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The equation (7) can be written into the matrices form by: 
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For deriving the operational matrix of Haar wavelets, we let H

 
in the 

equation (5), and obtain: 
T

BH HQHQ

      
   (10) 

where HQ is the operational matrix for integration of H . 
For example, the operational matrix of the Haar wavelet in the case of m=4 is 
given by: 
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Now, by using the equation (2) and the integration of equation (8) with 
respect to variable t yields [8]: 
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Further integration with respect to variable x gives: 
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3- Numerical solutions:  
We will use the operational matrices of the Haar wavelets to solve 

nonlinear system (1). 
Let 
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such that nj ,...,2,1 . 
by the equation (8), we can write the equation (13) as Haar matrix, that is: 
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such that nj ,...,2,1

 
, jnjj CCC ,...,, 21 are the coefficient matrices of jnjj uuu ,...,, 21 

respectively and calculated by using the equation (9), we get: 
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Now, by using the equation (13), the equation (1) becomes: 
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such that nj ,...,2,1 .  
We transform the system (17) into the matrices form by using the 

equation (14), we get:  
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such that )(xH T  and )(tH  are the Haar matrices and: 
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nGGG ,...,, 21 are matrices such that the diagonal elements of each matrix 
niGi ,...,2,1  are known that is when ii tx , but other elements are unknown: 
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The functions )(),...,(),( 21 xgxgxg n are found by integrating the 
functions ),(),...,,(),,( 21 txutxutxu jnjj from (0 to x) with respect to (t) and adding 

the functions )(),...,(),( 21 xyxyxy n , therefore, the functions 
)(),...,(),( 21 xgxgxg n are consisting of two variables (t) and (x) 

),(),...,,(),,( 21 txgtxgtxg n but by substituting the integration boundaries they 
become one variable functions; that is:  
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Now, by using the equation (11), the system (18) becomes: 
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by substitute the equation (15) in the system (20), then: 
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To find the values of the matrices nyyy ,...,, 21 which have m2

 

of the 
elements respectively, we solve the system (21) which gives nonlinear system 
of the equations such that the equations number is equal to the variables 
number and we can solved them by Newton-Raphson system method . 
4- Illustrating Examples:  

For illustrating the numerical solution for the above system, consider 
the following example.   

Example 1:  
We consider the following nonlinear integral equations: 
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The exact solution for equation (22) are: 
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the system (22) can be solved by using numerical solution described in this 
paper and we get:  

X y1(x) Exact=x Error X y2(x) Exact=x2 Error 

1/8=0.125 0.125029138072377 0.125 2.9138e-005 1/8 0.015630106212422 0.015625 5.1062e-006 

3/8=0.375 0.376704539897345 0.375 0.0017 3/8 0.141231766539293 0.140625 6.0677e-004 

5/8=0.625 0.637207738582420 0.625 0.0122 5/8 0.395383102043036 0.390625 0.0048 

7/8=0.875 0.932483521157945 0.875 0.0575 7/8 0.784288165537893 0.765625 0.0187 

Table 1: Comparison between the real solution and the numerical solution and to found  y1(x), y2(x) the 
amount of error for Example(1) when m=4.            

when the dimension of the matrices increase then the numerical solution 
converges towards the exact solution as shown in the table (2) such that the 
dimensions of the matrices are m=8.   

X y1(x) Exact=x Error X y2(x) Exact=x2 Error 

1/16 0.062500812605673 0.0625 8.1261e-7 1/16 0.003905772929912 0.00390625 4.77070088e-7 

3/16 0.187538573673104 0.1875 3.8574e-5 3/16 0.035153537434621 0.03515625 2.712565379e-6 

5/16 0.312728525731551 0.3125 2.2853e-4 5/16 0.097726399249249 0.09765625 7.0149249249e-5 

7/16 0.438267582560184 0.4375 7.6758e-4 7/16 0.191708324679084 0.19140625 3.02074679084e-4

 

9/16 0.564476892276982 0.5625 0.0020 9/16 0.317204874929301 0.31640625 7.98624929301e-4

 

11/16 0.691925427919539 0.6875 0.0044 11/16 0.474373022641958 0.47265625 1.71677264195e-3

 

13/16 0.821751345767716 0.8125 0.0093 13/16 0.663481937615570 0.66015625 3.32568761557e-3

 

15/16 0.956518518319132 0.9375  0.0190 15/16 0.885044973971101 0.87890625 6.13872397110e-3

 

Table 2: The numerical solution to found  y1(x), y2(x) and Comparison with the exact solution and the 
amount of error for Example(1) when  m=8.  
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Example 2:  
Solve a system of nonlinear integral equations: 
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the system (25) can be solved by using numerical solution described in this 
paper and we get:  

X y1(x) Exact= 
sec(x) 

Error X y2(x) Exact= 
tan(x) 
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Table 3: The numerical solution to found  y1(x), y2(x) and Comparison with the exact solution and the 
amount of error for Example(2) when m=4.  
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Table 4: The numerical solution to found  y1(x), y2(x) and Comparison with the exact solution and the 
amount of error for Example(2) when m=8.  
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Figure 1: Comparison between the exact solution and the numerical solution of y1(x) when m=4 and m=8 for Example 1.   
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5-Conclusions: 
              In this paper, We are using the operational matrices of the Haar 
wavelets method for solving non linear volterra integral equations system of 
the second kind. And compare the results with the exact solutions, by solving 
two examples when m=4 and m=8. Note that the high accuracy of numerical 
solution increases is directly proportional to increase in dimensions of 
operational matrices and note that converges towards the exact solution as 
shown in the tables (1),(2),(3)&(4)and figures(1),(2),(3) &(4). Then for better 
results, using the greater m is recommended. The present method reduces an 
numerical integral equations system into a set of algebraic equations which its 
solve by using Newton-Raphson method.  
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