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differential equations by using Ito's-formula. First he found  general 

form  for exponential stochastic differential equation. then, derived their 
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some examples to explain the method.  Stochastic differential equations 

(SDEs) are frequently employed in various modeling applications due to 

their ability to incorporate randomness or uncertainty into ordinary 

differential equations. By introducing a random or stochastic component, 

these equations can capture unexpected phenomena. Consequently, 

SDEs are also known as stochastic or random differential equations, with 

the noise term representing the random element. In this way, an SDE 

comprises multiple random processes, leading to the solution itself being 

a stochastic process. Consider the ordinary differential equation 

represent the differential form of   Brownian motion's, multiply then the 

exact solution will be needed in order to find the moments to the solution 

of the exponential stochastic differential equations. 
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• Introduction: 

Stochastic differential equations (SDEs) are frequently employed in various 

modeling applications due to their ability to incorporate randomness or 

uncertainty into ordinary differential equations. By introducing a random or 

stochastic component, these equations can capture unexpected phenomena. 

Consequently, SDEs are also known as stochastic or random differential 

equations, with the noise term representing the random element. In this way, an 

SDE comprises multiple random processes, leading to the solution itself being a 

stochastic process. Consider the ordinary differential equation    

{
𝑥(𝑡) = 𝑓(𝑡, 𝑥(𝑡))   ;      𝑡 > 0  

𝑥(0) =  𝑥0                                     
                               …(1)                                                 

 𝑤ℎ𝑒𝑟𝑒 𝑓(0)  𝑖𝑠 𝑎 𝑠𝑚𝑜𝑜𝑡ℎ 𝑓𝑢𝑐𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑥0 is any fixed point 𝑥0 ∈ ℛ𝑛 

In the S.D.E. model such a model must contain  random or stochastic effects 

called  (wiener process known as Brownian motion ) in order to formulate 

random behavior, then we obtain   

{𝑥̇(𝑡) = 𝑓(𝑡, 𝑥(𝑡)) + 𝑔(𝑡, 𝑥(𝑡))𝜁(𝑡)     ;       𝑡 > 0 .               …(2)                          

  Where the process  {𝜁(𝑡)} is a white noise (defined as the formal derivative of 

Weiner process). 

Then we can write (2) as:   

{
𝑑𝑥(𝑡)

𝑑𝑡
= 𝑓(𝑡, 𝑥(𝑡)) + 𝑔(𝑡, 𝑥(𝑡)

𝑑𝑤(𝑡)

𝑑𝑡
                                                               …(3)                                                             

Where
𝑑𝑤(𝑡)

𝑑𝑡
= 𝜉(𝑡) , 𝑑𝑤(𝑡)represent the differential form of Brownian motion's, 

multiply by  𝑑𝑡 so equation (3) became 

{
𝑑𝑥(𝑡) = 𝑓(𝑡, 𝑥(𝑡))𝑑𝑡 +  𝑔(𝑡, 𝑥(𝑡))𝑑𝑤(𝑡)

𝑥(0) = 𝑥0                                                              
                      …(4)                                                       

Where 𝑓(0)is the drift coefficient and 𝑔(0)is the diffusion coefficient   

Equation (4) is called (S.D.E)  stochastic  differential equation  
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After we  find the general form of the  exponential stochastic differential 

equation by applying Ito formula, we also find the exact solution for those 

equation  in order to find the moment  for the exact solution for the proposed 

model 

PREREQUISITES AND RESULTS:  

     In this paragraph, we give some basic definitions which we have needed and 

find the general form of the exponential stochastic differential equation. 

Definition(1):The  random variable[3]  

The variable at random (𝔯, 𝑣) is a function that translates from the sample space 

to the real number ℛ (i.e., ℛ) 

Definition (2): stochastic process [4] 

A stochastic process, also known as a random process, is a mathematical entity 

that consists of a collection of random variables represented by 𝑥(t),t belonging 

to 𝒯 (sorted by index set 𝒯 where 𝒯 ∈ ℛ)  

Definition (3): (Wiener (Brownian motion) Process ) [5] 

The  continuous-time stochastic wiener process (Brownian motion) {𝑊(𝑡)}over 

the interval [0, 𝒯], satisfying the following conditions:. 

 1: 𝑤 (0)  =  0  

2: 𝐼𝑓 𝑡, 𝑠 ≥  0, 𝑡ℎ𝑒𝑛 𝑤(𝑡) −  𝑤(𝑠) is normally distributed with zero mean and 

variance |𝑡 − 𝑠|. 

3: For 0 ≤ 𝑠 < 𝑡 < 𝑘 < 𝑗 ≤ 𝒯, 𝑤 (t)- 𝑤 (s) and 𝑤(𝑗) − 𝑤(𝑘) are independent 

increments. 

Definition (4): Stochastic integral: [6] 

The Stochastic integral is an integral defined as a sum of  more than an 

integration and multiplied by the increase in time on the Brownian motion 

trajectory (Dumas and Luciano, 2017). Which is defined by 

∫ 𝑔(𝑡)𝑑𝑤(𝑡) = ∑ 𝜁𝑖(𝑤𝑡𝑖+1
− 𝑤𝑡𝑖

)𝜅−1
𝑖=0

𝑏

𝑎
                            …(5) 
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Where 𝑔(t) = {𝑔(𝑡)}a ≤ t < 𝑏  is a real valued stochastic process and {𝑤(t)}  is a 

Wiener process(Brownian motion) . 

Let equation (4) be expressed in the form, that is, 

𝒳(𝑡) = 𝒳(0) + ∫ 𝑓(s , 𝑥(s))ds
𝑡

0
+ ∫ 𝑔(s , 𝑥(s ))d𝑤(s)

𝑡

0
 …(6)                  

 Where the two integrals ∫ 𝑓(s, 𝑥(s))ds
𝑡

0
  ,     ∫ 𝑔(s, 𝑥(s))d𝑤(s)

𝑡

0
 

are well-defined in order that equation (7) hold, and we have the following 

conditions. 

E∫ 𝑔2(s, 𝑥(s))ds
𝑡

0
< ∞, ∫ |𝑓(s, x(s))|ds < ∞

𝑡

0
 for all, almost surely 𝑡 ≥  0 

The stochastic integral has one of the most essential properties. 

∫ 𝑤(S)d𝑤(s) =
1

2

𝑡

0
∫ 𝑑(𝑤2(𝑆)) −

1

2

𝑡

0
∫ 𝑑𝑠

𝑡

0
=

1

2
𝑤2(𝑡) −

𝑡

2
                …(7) 

Then   the general form is that : 

∫ 𝑤𝑗(𝑡)𝑑𝑤(𝑡) =
1

𝑗 + 1
𝑤𝑗+1(𝑡) + ∑(−1)𝜅+1

𝑗−2

𝜅=0

𝑗!

2𝜅+1(𝑗 − 𝑘)!

𝑡

0

𝑤𝑗−𝜅(𝑡)

+ (−1)𝑗
𝑗!

2𝑗

𝑡

2
                                                                                            … (8) 

   Definition (5): Ito’s integral formula [7]:   

Consider the stochastic differential equation, which has the following form. 

𝑑x(𝑡) = 𝑓(𝑡, x(𝑡))𝑑𝑡 + 𝑔(𝑡, x(𝑡))𝑑𝑤(𝑡)                                                       …(9)   

If 𝐹(t,𝑥(t)) is a smooth function for 0 ≤ 𝑡 ≤ 𝒯, we have by the basic Taylor rule 

                               dF(t, 𝑥(t)) =
∂F

∂t
dt +

∂F

∂x
𝑑x(𝑡) +

1

2
 
∂2F

∂x2
g2dt                                                                        

Then if the requisite partial derivatives are available, and the mixed differentials 

are merged according to the rules, 

𝑑𝑡. 𝑑𝑤 = 𝑑𝑤. 𝑑𝑡 = (𝑑𝑡)2 = 0    & (𝑑𝑤)2 = 𝑑𝑡 
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So, 

𝑑𝐹(𝑡, x(𝑡)) = (
𝜕𝐹

𝜕𝑡
+ 𝑓(𝑡, x(𝑡))

𝜕𝐹

𝜕𝑥
+

1

2
𝑔2(𝑡, x(𝑡))

𝜕2𝐹

𝜕𝑥2) 𝑑𝑡 + 𝑔(𝑡, x(𝑡)) 
𝜕𝐹

𝜕𝑥
𝑑𝑤(𝑡)         

…(10)                                                              

Equation.(11) is called Ito’s  formula, where x(𝑡) satisfies Equation, (10). 

Definition (6) :  Expectation and  Variance [8] 

If 𝑥 is a random variable specified on the probability space(𝛺. ℱ. 𝒫), then 𝑥's 
expected values or mean are. 

𝐸(x) =  µ = ∑ x𝑖𝑝(x𝑖)𝑖 .                                  …(11) 

Where  𝑝(x𝑖) is the probability mass function 

That's the average of 𝑥 across all of the probability spaces. 

While For a continuous random variable over ℛ. 

E(x) = ∫ xf(x)dx
∞

−∞
                                                   …(12) 

Provided that the integral exist ,here  f(𝑥) is the probability density function. 

The variance is a measure of how widely data is distributed around the mean. 

Var(x) = E((x − μ)2) = E(x2) − (𝐸(x))2                           …(13) 

Definition (7): The 𝒌𝒕𝒉-order moment:[9] 

A continuous random variable's 𝑘𝑡ℎ-order moment is defined as: 

E(x𝜅) = ∫ x𝜅f(x)dx
∞

−∞
; ; f(x) is the  probability density function.  

And for discreet random variable  

E(x𝜅) = ∑ xi
𝜅p(xi)i   ; p(xi)is the mass function. 

Note: 

From the definition of the Brownian motion process {𝑤(𝑡)}, since  the 

increments 
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 𝑤(𝑡) −  𝑤(𝑠) are normally distributed with mean zero and variance |𝑡 − 𝑠|,   

    𝑤(𝑡) −  𝑤(𝑠)~𝑁(0, 1)~|𝑡 − 𝑠|, then  

𝐸[𝑤(𝑡)] = 0 𝑎𝑛𝑑 𝑉𝑎𝑟[𝑤(𝑡)] = 𝑡                                …(14) 

Their fore   for any integer 𝜅 ≥ 0 we have 

𝐸[𝑤2𝜅] =
(2𝜅)!

2𝑘𝜅!
𝑡𝜅, 𝐸[𝑤2𝜅+1] = 0                        …(15) 

In particular, 𝐸[𝑤4] = 3𝑡2, 𝐸[𝑤6] = 15𝑡3 

𝐸 [∫ 𝑓(𝑤(𝑡), 𝑡)𝑑𝑤
𝑏

𝑎
] = 0                                                 … (16)   

 main results:     

In this paragraph we find the solution for general form of the exponential 

stochastic differential equation in order to find the moments by the use of Ito-

integral formula  

 i) Let 𝐹(𝑡, 𝒳(𝑡)) = 𝑒(𝑡𝑥)𝑛
 and suppose that 𝑥(t) satisfies equation(9) : 

Let  𝐹(t,𝑥(t)) and its partial derivative are continuous and smooth function for 

0 ≤ 𝑡 ≤ 𝒯, then  

 𝜕𝐹

𝜕𝑡
= 𝑛𝑡𝑛−1𝑥𝑛𝑒(𝑡𝑥)𝑛

  , 𝜕𝐹

𝜕𝑥
= 𝑛𝑥𝑛−1𝑡𝑛𝑒(𝑡𝑥)𝑛

   

𝜕2𝐹

𝜕𝑥2 = 𝑛2𝑡2𝑛𝑥2𝑛−2𝑒(𝑡𝑥)𝑛
+ 𝑛(𝑛 − 1)𝑡𝑛𝑥𝑛−2𝑒(𝑡𝑥)𝑛

 

By using Ito-integral formula  

𝑑(𝐹) = [ 𝜕𝐹

𝜕𝑡
+ 𝑓 𝜕𝐹

𝜕𝑥
+ 1

2
𝑔2𝜕2𝐹

𝜕𝑥2]𝑑𝑡 + 𝑔𝜕𝐹

𝜕𝑥
𝑑𝑤(𝑡)               … (17)    

𝑑(𝑒(𝑡𝑥)𝑛
) = [𝑛𝑡𝑛−1𝑥𝑛𝑒(𝑡𝑥)𝑛

+ 𝑓𝑛𝑥𝑛−1𝑡𝑛𝑒(𝑡𝑥)𝑛

+
1

2
𝑔2(𝑛2𝑡2𝑛𝑥2𝑛−2𝑒(𝑡𝑥)𝑛

+ 𝑛(𝑛 − 1)𝑡𝑛𝑥𝑛−2𝑒(𝑡𝑥)𝑛
)] 𝑑𝑡

+ [𝑔𝑛𝑥𝑛−1𝑡𝑛𝑒(𝑡𝑥)𝑛
]𝑑𝑤(𝑡) 
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By taking the integral from 0 to t, the solution is:  

∫ d
t

0

(e(tx)n
) = ∫ [

t

0

[ntn−1xne(tx)n
+ fnxn−1tne(tx)n

+
1

2
g2(n2t2nx2n−2e(tx)n

+ n(n − 1)tnxn−2e(tx)n
)] dt

+ ∫ [
t

0

[gnxn−1tne(tx)n
]dw(t) 

(e(tx)n
) = e0

+ ∫ [
𝑡

0

[𝑛𝑡𝑛−1𝑥𝑛𝑒(𝑡𝑥)𝑛
+ 𝑓𝑛𝑥𝑛−1𝑡𝑛𝑒(𝑡𝑥)𝑛

+
1

2
𝑔2(𝑛2𝑡2𝑛𝑥2𝑛−2𝑒(𝑡𝑥)𝑛

+ 𝑛(𝑛 − 1)𝑡𝑛𝑥𝑛−2𝑒(𝑡𝑥)𝑛
)] 𝑑𝑡

+ ∫ [
𝑡

0

[𝑔𝑛𝑥𝑛−1𝑡𝑛𝑒(𝑡𝑥)𝑛
]𝑑𝑤(𝑡) 

Taking expectations to both sides  

𝐸(e(tx)n
) = 1

+ 𝐸 (∫ [
t

0

[ntn−1xne(tx)n
+ fnxn−1tne(tx)n

+
1

2
g2(n2t2nx2n−2e(tx)n

+ n(n − 1)tnxn−2e(tx)n
)] dt)

+ E (∫ [
t

0

[gnxn−1tne(tx)n
]dw(t)) 

Since {𝑤(𝑡)} is a wiener process and from the previous note  

 

E (∫ [
t

0

[gnxn−1tne(tx)n
]dw(t)) = 0 

Then  
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𝐸(e(tx)n
) = 1

+ 𝐸 (∫ [
t

0

[ntn−1xne(tx)n
+ fnxn−1tne(tx)n

+
1

2
g2(n2t2nx2n−2e(tx)n

+ n(n − 1)tnxn−2e(tx)n
)] dt)                   … (18) 

To find the variance , we need to find 𝐸[(e(tx)n
)]2, that is 𝐹(t,𝑥(t))= (e𝑡𝑛𝑥𝑛

)2 

d(𝐹(t, 𝑥(t))) = d(e𝑡𝑛𝑥𝑛
)2

= [2ntn−1xne2𝑡𝑛𝑥𝑛
+ 2fnxn−1tne2𝑡𝑛𝑥𝑛

+
1

2
g2(4n2t2nx2n−2e2𝑡𝑛𝑥𝑛

+ 2n(n − 1)tnxn−2e2𝑡𝑛𝑥𝑛
)] dt

+ [2gnxn−1tne2𝑡𝑛𝑥𝑛
]dw(t) 

Taking the integration for both side from 0 to t , we get 

∫ 𝑑
𝑡

0

(e𝑡𝑛𝑥𝑛
)2

= ∫ [
𝑡

0

[2ntn−1xne2𝑡𝑛𝑥𝑛
+ 2fnxn−1tne2𝑡𝑛𝑥𝑛

+ 2𝑔2n2t2nx2n−2e2𝑡𝑛𝑥𝑛
+ 𝑔2n(n − 1)tnxn−2e2𝑡𝑛𝑥𝑛

]dt

+ ∫ [
𝑡

0

2gnxn−1tne2𝑡𝑛𝑥𝑛
(e𝑡𝑛𝑥𝑛

)2]dw(t) 

(e𝑡𝑛𝑥𝑛
)2 = 1

+ ∫ [
𝑡

0

[2ntn−1xne2𝑡𝑛𝑥𝑛
+ 2fnxn−1tne2𝑡𝑛𝑥𝑛

+ 2𝑔2n2t2nx2n−2e2𝑡𝑛𝑥𝑛
+ 𝑔2n(n − 1)tnxn−2e2𝑡𝑛𝑥𝑛

]dt

+ ∫ [
𝑡

0

2gnxn−1tne2𝑡𝑛𝑥𝑛
(e𝑡𝑛𝑥𝑛

)2]dw(t) 

The expectation is then : 
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E(e𝑡𝑛𝑥𝑛
)2 = 1

+ E (∫ [
𝑡

0

[2ntn−1xne2𝑡𝑛𝑥𝑛
+ 2fnxn−1tne2𝑡𝑛𝑥𝑛

+ 2𝑔2n2t2nx2n−2e2𝑡𝑛𝑥𝑛

+ 𝑔2n(n − 1)tnxn−2e2𝑡𝑛𝑥𝑛
]dt)                        … . (19) 

From the definition of the variance , i.e. 

𝑉𝑎𝑟(e𝑡𝑛𝑥𝑛
) = 𝐸(e𝑡𝑛𝑥𝑛

)2 − (𝐸(𝑒𝑡𝑛𝑥𝑛
))2 

𝑉𝑎𝑟(e𝑡𝑛𝑥𝑛
) =  1

+ E (∫ [
𝑡

0

[2ntn−1xne2𝑡𝑛𝑥𝑛
+ 2fnxn−1tne2𝑡𝑛𝑥𝑛

+ 2𝑔2n2t2nx2n−2e2𝑡𝑛𝑥𝑛
+ 𝑔2n(n − 1)tnxn−2e2𝑡𝑛𝑥𝑛

]dt) − (1

+ 𝐸(∫ [
t

0

[ntn−1xne(tx)n
+ fnxn−1tne(tx)n

+
1

2
g2(n2t2nx2n−2e(tx)n

+ n(n − 1)tnxn−2e(tx)n
)] dt)2 

 

The 𝑘𝑡ℎ-order moment has the form: 

d(e𝑡𝑛𝑥𝑛
)𝑚 = [mntn−1xne𝑚𝑡𝑛𝑥𝑛

+ mfnxn−1tne𝑚𝑡𝑛𝑥𝑛

+
1

2
g2(𝑚2n2t2nx2n−2e𝑚𝑡𝑛𝑥𝑛

+ mn(n − 1)tnxn−2e𝑚𝑡𝑛𝑥𝑛
)] dt

+ [mgnxn−1tne𝑚𝑡𝑛𝑥𝑛
]dw(t) 

By integration, we get  
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∫ 𝑑
𝑡

0

(𝑒𝑡𝑛𝑥𝑛
)𝑚

= ∫ [𝑚𝑛𝑡𝑛−1𝑥𝑛𝑒𝑚𝑡𝑛𝑥𝑛
+ 𝑚𝑓𝑛𝑥𝑛−1𝑡𝑛𝑒𝑚𝑡𝑛𝑥𝑛

𝑡

0

+
1

2
𝑔2(𝑚2𝑛2𝑡2𝑛𝑥2𝑛−2𝑒𝑚𝑡𝑛𝑥𝑛

+ 𝑚𝑛(𝑛 − 1)𝑡𝑛𝑥𝑛−2𝑒𝑚𝑡𝑛𝑥𝑛
)]𝑑𝑡

+ ∫ [𝑚𝑔𝑛𝑥𝑛−1𝑡𝑛𝑒𝑚𝑡𝑛𝑥𝑛
]𝑑𝑤(𝑡)

𝑡

0

 

(𝑒𝑡𝑛𝑥ₜ𝑛)𝑚 = 1

+ ∫ [𝑚𝑛𝑡𝑛−1𝑥𝑛𝑒𝑚𝑡𝑛𝑥𝑛
+ 𝑚𝑓𝑛𝑥𝑛−1𝑡𝑛𝑒𝑚𝑡𝑛𝑥𝑛

𝑡

0

+
1

2
𝑔2(𝑚2𝑛2𝑡2𝑛𝑥2𝑛−2𝑒𝑚𝑡𝑛𝑥𝑛

+ 𝑚𝑛(𝑛 − 1)𝑡𝑛𝑥𝑛−2𝑒𝑚𝑡𝑛𝑥𝑛
)]𝑑𝑡

+ ∫ [𝑚𝑔𝑛𝑥𝑛−1𝑡𝑛𝑒𝑚𝑡𝑛𝑥𝑛
]𝑑𝑤(𝑡)

𝑡

0

  

 

By taking the expectation, then we get 

𝐸(𝑒𝑡𝑛𝑥ₜ𝑛)𝑚 = 1

+ 𝐸(∫ [𝑚𝑛𝑡𝑛−1𝑥𝑛𝑒𝑚𝑡𝑛𝑥𝑛
+ 𝑚𝑓𝑛𝑥𝑛−1𝑡𝑛𝑒𝑚𝑡𝑛𝑥𝑛

𝑡

0

+
1

2
𝑔2(𝑚2𝑛2𝑡2𝑛𝑥2𝑛−2𝑒𝑚𝑡𝑛𝑥𝑛

+ 𝑚𝑛(𝑛 − 1)𝑡𝑛𝑥𝑛−2𝑒𝑚𝑡𝑛𝑥𝑛
)])𝑑𝑡         … (20) 

 ii) Let 𝐹(𝑡, 𝒳(𝑡)) = 𝑒(𝑡𝑥)𝑛
 and suppose that 𝑥(t) satisfies equation(10) : 

𝑑x(𝑡) = 𝑓(𝑡, x(𝑡))𝑑𝑡 + 𝑔(𝑡, x(𝑡))𝑑𝑤(𝑡)     

     
∂F

∂t
= 𝑛𝑥𝑒𝑛𝑡𝑥   , 

∂F

∂x
= 𝑛𝑡𝑒𝑛𝑡𝑥  , ∂2F

∂x2 = 𝑛2𝑡2𝑒𝑛𝑡𝑥 

By using Ito-integral formulas : 
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𝑑(𝑒𝑛𝑡𝑥) = [𝑛𝑥𝑒𝑛𝑡𝑥 + 𝑓𝑛𝑡𝑒𝑛𝑡𝑥 +
1

2
𝑔2𝑛2𝑡2𝑒𝑛𝑡𝑥] 𝑑𝑡 + [𝑔𝑛2𝑡2𝑒𝑛𝑡𝑥]𝑑𝑤(𝑡) 

∫ 𝑑
𝑡

0

(𝑒𝑛𝑡𝑥) = ∫ [𝑛𝑥𝑒𝑛𝑡𝑥 + 𝑓𝑛𝑡𝑒𝑛𝑡𝑥 +
1

2
𝑔2𝑛2𝑡2𝑒𝑛𝑡𝑥]

𝑡

0

𝑑𝑡 + ∫ [𝑔𝑛2𝑡2𝑒𝑛𝑡𝑥]
𝑡

0

𝑑𝑤(𝑡) 

𝑒𝑛𝑡𝑥ₜ = 1 + ∫ [𝑛𝑥𝑒𝑛𝑡𝑥 + 𝑓𝑛𝑡𝑒𝑛𝑡𝑥 +
1

2
𝑔2𝑛2𝑡2𝑒𝑛𝑡𝑥]

𝑡

0

𝑑𝑡 + ∫ [𝑔𝑛2𝑡2𝑒𝑛𝑡𝑥]
𝑡

0

𝑑𝑤(𝑡) 

𝐸(𝑒𝑛𝑡𝑥ₜ) = 1 + 𝐸 (∫ [𝑛𝑥𝑒𝑛𝑡𝑥 + 𝑓𝑛𝑡𝑒𝑛𝑡𝑥 +
1

2
𝑔2𝑛2𝑡2𝑒𝑛𝑡𝑥]

𝑡

0

𝑑𝑡)       … (21) 

To find the variance , we find 𝐸(𝑒𝑛𝑡𝑥)2 

𝑑(𝑒𝑛𝑡𝑥)2 = [2𝑛𝑥𝑒2𝑛𝑡𝑥 + 2𝑓𝑛𝑡𝑒2𝑛𝑡𝑥 + 2𝑔2𝑛2𝑡2𝑒𝑛𝑡𝑥]𝑑𝑡 + [2𝑔𝑛2𝑡2𝑒2𝑛𝑡𝑥]𝑑𝑤(𝑡) 

 

∫ 𝑑
𝑡

0

(𝑒𝑛𝑡𝑥)2 = ∫ [2𝑛𝑥𝑒2𝑛𝑡𝑥 + 2𝑓𝑛𝑡𝑒2𝑛𝑡𝑥 + 2𝑔2𝑛2𝑡2𝑒𝑛𝑡𝑥]
𝑡

0

𝑑𝑡

+ ∫ [2𝑔𝑛2𝑡2𝑒2𝑛𝑡𝑥]𝑑𝑤(𝑡)
𝑡

0

 

(𝑒𝑛𝑡𝑥ₜ)2 = 1 + ∫ [2𝑛𝑥𝑒2𝑛𝑡𝑥 + 2𝑓𝑛𝑡𝑒2𝑛𝑡𝑥 + 2𝑔2𝑛2𝑡2𝑒𝑛𝑡𝑥]
𝑡

0

𝑑𝑡

+ ∫ [2𝑔𝑛2𝑡2𝑒2𝑛𝑡𝑥]𝑑𝑤(𝑡)
𝑡

0

 

𝐸(𝑒𝑛𝑡𝑥ₜ)2 = 1 + 𝐸 (∫ [2𝑛𝑥𝑒2𝑛𝑡𝑥 + 2𝑓𝑛𝑡𝑒2𝑛𝑡𝑥 + 2𝑔2𝑛2𝑡2𝑒2𝑛𝑡𝑥]
𝑡

0

𝑑𝑡)        … (22) 

From eq.(21) and eq.(22), we get  

𝑉𝑎𝑟(𝑒𝑛𝑡𝑥) =  𝐸(𝑒𝑛𝑡𝑥ₜ)2 − (𝐸(𝑒𝑛𝑡𝑥ₜ))2 



College of Basic Education Researchers Journal,Vol.20/4.1 February 2025 

 

598 
 

𝑉𝑎𝑟(𝑒𝑛𝑡𝑥) =  1 + 𝐸 (∫ [2𝑛𝑥𝑒2𝑛𝑡𝑥 + 2𝑓𝑛𝑡𝑒2𝑛𝑡𝑥 + 2𝑔2𝑛2𝑡2𝑒𝑛𝑡𝑥]
𝑡

0

𝑑𝑡)

− (1 + 𝐸 (∫ [𝑛𝑥𝑒𝑛𝑡𝑥 + 𝑓𝑛𝑡𝑒𝑛𝑡𝑥 +
1

2
𝑔2𝑛2𝑡2𝑒𝑛𝑡𝑥]

𝑡

0

𝑑𝑡))2 

 

The kth-order moment is:  

𝑑(𝑒𝑛𝑡𝑥)𝑚 = [𝑚𝑛𝑥𝑒𝑚𝑛𝑡𝑥 + 𝑚𝑓𝑛𝑡𝑒𝑚𝑛𝑡𝑥 +
1

2
𝑚2𝑔2𝑛2𝑡2𝑒𝑚𝑛𝑡𝑥] 𝑑𝑡

+ [𝑚𝑔𝑛2𝑡2𝑒𝑚𝑛𝑡𝑥]𝑑𝑤(𝑡) 

∫ 𝑑
𝑡

0
(𝑒𝑛𝑡𝑥)𝑚 = ∫ [𝑚𝑛𝑥𝑒𝑚𝑛𝑡𝑥 + 𝑚𝑓𝑛𝑡𝑒𝑚𝑛𝑡𝑥 +

𝑡

0

1

2
𝑚2𝑔2𝑛2𝑡2𝑒𝑚𝑛𝑡𝑥]𝑑𝑡 + ∫ [𝑚𝑔𝑛2𝑡2𝑒𝑚𝑛𝑡𝑥]

𝑡

0
dw(t) 

(𝑒𝑛𝑡𝑥ₜ)𝑚 = 1 + ∫ [𝑚𝑛𝑥𝑒𝑚𝑛𝑡𝑥 + 𝑚𝑓𝑛𝑡𝑒𝑚𝑛𝑡𝑥 +
𝑡

0

1

2
𝑚2𝑔2𝑛2𝑡2𝑒𝑚𝑛𝑡𝑥]𝑑𝑡 + ∫ [𝑚𝑔𝑛2𝑡2𝑒𝑚𝑛𝑡𝑥]

𝑡

0
dw(t) 

𝐸(𝑒𝑛𝑡𝑥ₜ)𝑚 = 1

+ 𝐸(∫ [𝑚𝑛𝑥𝑒𝑚𝑛𝑡𝑥 + 𝑚𝑓𝑛𝑡𝑒𝑚𝑛𝑡𝑥
𝑡

0

+
1

2
𝑚2𝑔2𝑛2𝑡2𝑒𝑚𝑛𝑡𝑥] 𝑑𝑡)         … (23) 

EXAMPLEs: To explain the method of finding the moment for exponential 

stochastic differential equation, first we find the solution by Ito-integral formula, 

then applied the previous method for some special cases: 

EXAMPLE(1): 

 Let 𝑑𝑥(𝑡) = 𝑑𝑤(𝑡) ; 𝑥(0) = 0,   {𝑤(𝑡)}is wiener process, that is  𝑤(0) = 0 

Solution: since 𝑑𝑥(𝑡) = 𝑑𝑤(𝑡), then  𝑥(𝑡) = 𝑤(𝑡) is a wiener process in the 

interval [0,t] and  

Suppose  𝐹 = 𝑦𝑡 = 𝑒𝑛𝑡𝑥  .    
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 That is   
∂F

∂t
= 𝑛𝑥𝑒𝑛𝑡𝑥   , 

∂F

∂x
= 𝑛𝑡𝑒𝑛𝑡𝑥  , ∂2F

∂x2 = 𝑛2𝑡2𝑒𝑛𝑡𝑥 

From equation (10)  

𝑑(𝐹) = [ 
𝜕𝐹

𝜕𝑡
+ 𝑓 

𝜕𝐹

𝜕𝑥
+

1

2
𝑔2𝜕2𝐹

𝜕𝑥2] 𝑑𝑡 + 𝑔
𝜕𝐹

𝜕𝑥
𝑑𝑤(𝑡)                 

Or  𝑑(𝑦ₜ) = [ 𝑛𝑥𝑒𝑛𝑡𝑥 + 1

2
 𝑛2𝑡2𝑒𝑛𝑡𝑥]𝑑𝑡+𝑛𝑡𝑒𝑛𝑡𝑥𝑑𝑤(𝑡)     …(24) 

Taking expectation to both sides(25) of , we get  

𝑑𝐸(𝑦ₜ) = 𝐸((𝑛𝑥yₜ +
1

2
 𝑛2𝑡2yₜ)dt) + E(𝑛𝑡yₜdw(t))       ,   since   Ed(wₜ)=0      

𝑑𝐸(𝑦ₜ) = (𝑛𝐸(𝑥)𝐸(y)ₜ +
1

2
 E(𝑛2𝑡2yₜ))dt 

𝑑𝐸(𝑦ₜ) = 𝑛𝐸(𝑥)𝐸(yₜ) +
1

2
(𝑛2𝑡2)𝐸(yₜ)dt 

dE(yₜ)

𝐸(yₜ)
= [𝑛𝐸(𝑥) +

1

2
(𝑛2𝑡2)] dt 

By integrating from 0 to t  

∫ dE(yₜ)
E(yₜ)

=∫ [𝑛𝐸(𝑥)+ 
1
2

 (𝑛2𝑡2)]𝑑𝑡
𝑡
0

𝑡

0
 , since 𝑥(𝑡) = 𝑤(𝑡) that is 𝑥 follows a wiener stochastic 

process with zero mean , then (𝐸(𝑥) = 0 ) 

∫ dE(yₜ)
E(yₜ)

=∫ [ 
1
2

 𝑛2𝑠2]𝑑𝑠
𝑡
0

𝑡

0
  

ln( 𝐸(yₜ) =  
1

6
 𝑛2𝑡3 

𝐸(yₜ) = 𝑒
1

6
 𝑛2𝑡3

      → 𝐸(𝑒𝑛𝑡𝑥) = 𝑒
1

6
 𝑛2𝑡3

       …(25) 

 

To find the variance , we need 𝐸(𝑒𝑛𝑡𝑥)2 

Let 𝐸(𝑒𝑛𝑡𝑥)2 = 𝐹ₜ 
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∂F

∂t
= 2𝑛𝑥𝑒2𝑛𝑡𝑥   , 

∂F

∂x
= 2𝑛𝑡𝑒2𝑛𝑡𝑥  , ∂2F

∂x2 = 4𝑛2𝑡2𝑒2𝑛𝑡𝑥 

𝑑(𝐹ₜ) = [2𝑛𝑥𝑒2𝑛𝑡𝑥 + 2𝑛2𝑡2𝑒2𝑛𝑡𝑥]𝑑𝑡 + 2𝑛𝑡𝑒2𝑛𝑡𝑥𝑑𝑤(𝑡) 

Taking expectation to both sides of SDE for Fₜ , we have 

 𝐸(𝑑𝐹ₜ) = 𝐸([2𝑛𝑥𝑒2𝑛𝑡𝑥 + 2𝑛2𝑡2𝑒2𝑛𝑡𝑥]𝑑𝑡) + 𝐸(2𝑛𝑡𝑒2𝑛𝑡𝑥𝑑𝑤(𝑡)) 

𝑑𝐸[𝐹ₜ] = [2𝑛𝐸[𝑥]𝐸[𝐹ₜ] + 2𝐸[𝑛2𝑡2𝐸[𝐹ₜ]]𝑑𝑡 + 𝐸(2𝑛𝑡𝑒2𝑛𝑡𝑥𝑑𝑤(𝑡)) 

𝑑𝐸[𝐹ₜ] = (2𝑛𝐸[𝑥] + 2𝐸[𝑛2𝑡2]) 𝐸[𝐹ₜ]𝑑𝑡   ,   since    𝐸[𝑥] is wiener (𝐸[𝑥] = 0)      

∫ dE[Fₜ]

E[Fₜ]

𝑡

0

= ∫ 2𝑛2𝑠2
𝑡

0

𝑑𝑠 

ln( 𝐸(Fₜ) =  
2

3
 𝑛2𝑡3 

𝐸(Fₜ) = 𝑒
2

3
 𝑛2𝑡3

      → 𝐸((𝑒𝑛𝑡𝑥)2 = 𝑒
2

3
 𝑛2𝑡3

     …(26)  

From eq.(26) and eq.(27), we get 

𝑉𝑎𝑟(𝑒𝑛𝑡𝑥) =  𝐸(𝑒𝑛𝑡𝑥ₜ)2 − (𝐸(𝑒𝑛𝑡𝑥ₜ))2 

𝑉𝑎𝑟(𝑒𝑛𝑡𝑥) = 𝑒
2
3

 𝑛2𝑡3

 − (𝑒
1
6

 𝑛2𝑡3

)2 

𝑉𝑎𝑟(𝑒𝑛𝑡𝑥) = 𝑒
2
3

 𝑛2𝑡3

 − 𝑒
1
3

 𝑛2𝑡3

 

The kth-moments ,  𝐸(𝑒𝑛𝑡𝑥)𝑚 

Let 𝐸(𝑒𝑛𝑡𝑥)𝑚 = 𝐹ₜ 

∂F

∂t
= 𝑚𝑛𝑥𝑒𝑚𝑛𝑡𝑥   , 

∂F

∂x
= 𝑚𝑛𝑡𝑒𝑚𝑛𝑡𝑥  , ∂2F

∂x2 = 𝑚2𝑛2𝑡2𝑒2𝑛𝑡𝑥 

𝑑(𝐹ₜ) = [𝑚𝑛𝑥𝑒𝑚𝑛𝑡𝑥 + 𝑚𝑛2𝑡2𝑒𝑚𝑛𝑡𝑥]𝑑𝑡 + 𝑚𝑛𝑡𝑒2𝑛𝑡𝑥𝑑𝑤(𝑡) 

Taking expectation on both sides of SDE for 𝐹ₜ , we have 

 𝐸(𝑑𝐹ₜ) = 𝐸([𝑚𝑛𝑥𝑒𝑚𝑛𝑡𝑥 +
1

2
𝑚2𝑛2𝑡2𝑒𝑚𝑛𝑡𝑥]𝑑𝑡) +  𝐸(𝑚𝑛𝑡𝑒𝑚𝑛𝑡𝑥𝑑𝑤(𝑡)) 
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𝑑𝐸[𝐹ₜ] = [𝑚𝑛𝐸[𝑥]𝐸[𝐹ₜ] + 𝐸[
1

2
𝑚2𝑛2𝑡2𝐸[𝐹ₜ]]𝑑𝑡 +  𝐸(𝑚𝑛𝑡𝑒𝑚𝑛𝑡𝑥𝑑𝑤(𝑡)) 

𝑑𝐸[𝐹ₜ] = (𝑚𝑛𝐸[𝑥] + 𝐸[1

2
𝑚2𝑛2𝑡2]) 𝐸[𝐹ₜ]𝑑𝑡   ;( since      (𝐸[𝑥] = 0) )     

∫ dE[Fₜ]

E[Fₜ]

𝑡

0

= ∫
1

2
𝑚2𝑛2𝑠2

𝑡

0

𝑑𝑠 

ln( 𝐸(Fₜ) =
1

6
𝑚2𝑛2𝑡3 

𝐸(Fₜ) = 𝑒
1

6
 𝑚2𝑛2𝑡3

      → 𝐸((𝑒𝑛𝑡𝑥)𝑚 = 𝑒
1

6
 𝑚2𝑛2𝑡3

      … (27) 

EXAMPLE(2): Let 𝑑𝑥(𝑡) = 𝑑𝑡 + 𝑑𝑤(𝑡) ,then find the moments of the solution 

,Where   W is wiener process and 𝑒𝑥(0) = 1 . Let  𝐹(𝑡, 𝑥ₜ) = 𝑒𝑥 

Solution: since 𝑑𝑥(𝑡) = 𝑑𝑡 + 𝑑𝑤(𝑡) , that is 𝑓 =  𝑔 = 1 in interval [0, 𝑡]   

We have   
∂F

∂t
= 0,    

∂F

∂x
=  ∂2F

∂x2 = 𝑒𝑥 

From equation(10) 

𝑑𝐹(𝑡, 𝑥ₜ) = [ 
𝜕𝐹

𝜕𝑡
+ 𝑓 

𝜕𝐹

𝜕𝑥
+

1

2
𝑔2𝜕2𝐹

𝜕𝑥2] 𝑑𝑡 + 𝑔
𝜕𝐹

𝜕𝑥
𝑑𝑤(𝑡)                 

 𝑑(𝑒𝑥) = [ 𝑒𝑥 + 1

2
𝑒𝑥]𝑑𝑡 + 𝑒𝑥𝑑𝑤(𝑡)         ...(28) 

Taking expectation to both sides of (28) 

𝐸𝑑(𝑒𝑥) = 𝐸[𝑒𝑥 + 1

2
𝑒𝑥]𝑑𝑡 + 𝐸[𝑒𝑥𝑑𝑤(𝑡)], Since {𝐸𝑑(𝑤ₜ) = 0}   

Then 

 𝐸𝑑(𝑒𝑥) = 𝐸[ 𝑒𝑥 +
1

2
𝑒𝑥]𝑑𝑡 

Or  

𝑑𝐸(𝑒𝑥) = 𝐸[ 𝑒𝑥][
3

2
]𝑑𝑡 

dE(𝑒𝑥)

E[ 𝑒𝑥]
=

3

2
𝑑𝑡 
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integrated both sides 

  ∫
dE(𝑒𝑥ₛ)

E[ 𝑒𝑥ₛ]
= ∫

3

2
𝑑𝑠

𝑡

0

𝑡

0
 

E[ 𝑒𝑥ₜ] = 1 + 𝑒
3
2

𝑡 − 1  → E[ 𝑒𝑥ₜ] = 𝑒
3
2

𝑡 

d(𝑒𝑥)2 = [2𝑒2𝑥 +
1

2
 (4𝑒2𝑥)]𝑑𝑡 + 2𝑒2𝑥𝑑𝑤(𝑡) 

integral in both sides 

∫ d(𝑒𝑥)2 = ∫ [2𝑒2𝑥 + 2𝑒2𝑥]𝑑𝑡 + ∫ 2𝑒2𝑥𝑑𝑤(𝑡)
𝑡

0

𝑡

0

𝑡

0

 

Expectation in both sides 

𝐸(∫ d(𝑒𝑥)2) = 𝐸(∫ [4𝑒2𝑥]𝑑𝑡) + 𝐸(∫ 2𝑒2𝑥𝑑𝑤(𝑡)
𝑡

0

𝑡

0

𝑡

0

) 

∫ dE(𝑒𝑥)2 = 𝐸(∫ [4𝑒2𝑥]𝑑𝑡)
𝑡

0

𝑡

0

 

∫ dE(𝑒𝑥)2 = 4 ∫ 𝐸[𝑒2𝑥]𝑑𝑡
𝑡

0

𝑡

0

 

1

2
∫ 2

𝑑𝐸[𝑒𝑥ₛ]2

𝐸[𝑒2𝑥ₛ]
=4 ∫ 𝑑𝑠

𝑡

0

𝑡

0

 

1

2
𝐼𝑛(E(𝑒𝑥ₛ)2|0

𝑡 ) = 4𝑠|0
𝑡  

𝐼𝑛(E(𝑒𝑥ₛ)2|0
𝑡 ) = 8𝑠|0

𝑡  

E(𝑒𝑥ₜ)2 = 1 + 𝑒8𝑠|0
𝑡
 

E(𝑒𝑥ₜ)2 = 1 +  𝑒8𝑡 − 1 → E(𝑒𝑥ₜ)2 =  𝑒8𝑡 

𝑉𝑎𝑟(𝑒𝑥ₜ) = 𝐸(𝑒𝑥ₜ)2 − (𝐸(𝑒𝑥ₜ))2 

𝑉𝑎𝑟(𝑒𝑥ₜ) =   𝑒8𝑡 − (𝑒
3
2

𝑡)2 
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𝑉𝑎𝑟(𝑒𝑥ₜ) =   𝑒8𝑡 −  𝑒3𝑡 

EXAMPLE(3)  Let 𝑑𝑥(𝑡) = 𝑑𝑡 + 𝑑𝑤(𝑡) ; 𝐹(𝑡, 𝑥ₜ) = 𝑒𝑡 

Solution: since 𝑑𝑥(𝑡) = 𝑑𝑡 + 𝑑𝑤(𝑡) , then we get 𝑓 =  𝑔 = 1 in interval [0, 𝑡]   

Let  𝐹(𝑡, 𝑥ₜ) = 𝑒𝑡  be smooth function and their partial derivate exist and 

continuous.    

 That is   
∂F

∂t
= 𝑒𝑡,    

∂F

∂x
=  ∂2F

∂x2 = 0 

By using equation (10) 

𝑑𝐹(𝑡, 𝑥ₜ) = [ 
𝜕𝐹

𝜕𝑡
+ 𝑓 

𝜕𝐹

𝜕𝑥
+

1

2
𝑔2𝜕2𝐹

𝜕𝑥2] 𝑑𝑡 + 𝑔
𝜕𝐹

𝜕𝑥
𝑑𝑤(𝑡)                 

 𝑑(𝑒𝑡) = 𝑒𝑡𝑑𝑡 

 integrate both sides  

∫ 𝑒𝑡 = ∫ 𝑒𝑡𝑑𝑡
𝑡

0

𝑡

0

 

Expectation in both sides   

𝐸(∫ 𝑒𝑡) = E(∫ 𝑒𝑡𝑑𝑡
𝑡

0

𝑡

0

) 

𝐸(𝑒𝑡) = 1 + 𝑒𝑡 − 1   → 𝐸(𝑒𝑡) = 𝑒𝑡     … (29) 

d(𝑒𝑡)2 = 2𝑒2𝑡𝑑𝑡 

integral in both sides 

∫ d(𝑒𝑡)2 = ∫ 2𝑒2𝑡𝑑𝑡
𝑡

0

𝑡

0

 

Expectation in both sides 

E(∫ d(𝑒𝑡)2) = 𝐸(∫ 2𝑒2𝑡𝑑𝑡
𝑡

0

𝑡

0
) 
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∫ dE(𝑒𝑡)2 = 𝐸(∫ [2𝑒2𝑡]𝑑𝑡)
𝑡

0

𝑡

0

 

E(𝑒𝑡)2 = 1 + 𝑒2𝑡-1 → E(𝑒𝑥ₜ)2 = 𝑒2𝑡       … (30) 

From eq.(30) and eq.(31), we get 

𝑉𝑎𝑟(𝑒𝑡) = 𝐸(𝑒𝑡)2 − (𝐸(𝑒𝑡))2 

𝑉𝑎𝑟(𝑒𝑡) = 𝑒2𝑡 − (𝑒𝑡)2 

𝑉𝑎𝑟(𝑒𝑡) = 𝑒2𝑡 − 𝑒2𝑡 

𝑉𝑎𝑟(𝑒𝑡) =  0 

then the exact solution will be needed in order to find the moments to the 

solution of the exponential stochastic differential equation then we explain it 

with some examples. 

Conclusion. 

In this paper, after we find and prove the general form of exponential 

stochastic differential equations  by using Ito- formula and using their 

theorem's .( That is, Ito’s formula is valid for exponential form of the 

functions u(x(t), t) of the variables t and x). 
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