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Abstract

In regression modeling, the occurrence of a strong correlation among predictors has
negative consequences for regression estimation. This problem can be solved using a
variety of biased methods. From the generalized linear models, the beta regression model
is a subset. When the response variable under examination is percentage, the beta
regression model is a well-known model in research. Using various theories, a number of
biased estimators for overcoming multicollinearity in beta regression models have been
developed in the literature. There is a review of recent biased techniques for beta regression
models. We can learn more about the performance of these biased estimators by comparing

them.

Keywords: Multicollinearity; biased estimator; beta regression model; Monte Carlo

simulation.
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1. Introduction

In econometric modeling, the multicollinearity problem is a common problem. It shows
that the explanatory variables have a strong relationship. In the case of severe
multicollinearity, the covariance matrix of the ML estimator is well-known to be ill-
conditioned. One of the negative consequences of this situation is that the regression
estimates’ variance becomes overstated. As a result, the coefficients' significance and
magnitude are changed. Many traditional ways to solving this problem have been explored,

such as deleting correlated variables, acquiring more data, or re-specifying the model.

The beta regression model is widely used in a variety of fields, including
unemployment rates in certain countries, income distribution, the Gini index for each
region, body fat percentage in medical disciplines, and graduation rates at key colleges.

The beta regression model is a type of generalized linear model (GLM) that is used to
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determine the impact of specific explanatory variables on a non-normal response variable.
The response component in beta regression, on the other hand, is limited to the range of

zero to one, as in percentages, proportions, and fractions.

Shrinkage estimating approaches, such as ridge, Liu, and Liu-type estimations, have
become a more widely accepted and successful methodology for solving the
multicollinearity problem in a variety of regression models in recent years. The ridge
estimator was proposed by Hoerl and Kennard (1970a, b). The ridge estimator works by
applying a small definite amount (k) to the diagonal entries of the covariance matrix to
boost conditioning, minimize MSE, and achieve consistent coefficients. For a review of

ridge and Liu estimators in both linear and GLMs.

Ridge regression is a biased method that shrinks all regression coefficients toward zero

to reduce the large variance [1]. This done by adding a positive amount to the diagonal of

X" X. As a result, the ridge estimator is biased but it guaranties a smaller mean squared

error than the ML estimator.

In linear regression, the ridge estimator is defined as
Brigge = (X" X+kID) X"y, 1)

where y is an nx1 vector of observations of the response variable, X =(x,,...,x,) isan

nxp known design matrix of explanatory variables, p=(g,,....5,) is a px1 vector of

unknown regression coefficients, 1 is the identity matrix with dimension pxp, and

k >0 represents the ridge parameter (shrinkage parameter). The ridge parameter, k ,
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controls the shrinkage of B toward zero. The OLS estimator can be considered as a special

estimator from Eq. (1) with k =0. For larger value of k , the BRidge estimator yields

greater shrinkage approaching zero [2, 3].
2. Beta regression model

In beta regression model (BRM), the response variable, y , is assumed to follow beta

distribution. The probability density function of beta distribution is given by

. _ ['(6,) 60,1, \(@-8)6)1
fV%e) e ae ) Y st @)

where 0< ¢, <1 and 6, >0. The mean and variance of Eq. (1) are given by, respectively,
E(y)=6 andV (y)=6,1-6)/(@1+86,) where 6, is a dispersion parameter. For a fixed
value of 6,, theV (Y ) value decrease when the value of 6, increases.

Consider that we have a data set {(y,,x;)}_, where y, €[] is a response variable

belongsto Eq. (1), X; = (Xil,Xiz,---,Xip) ell® isa p x1 known explanatory variable vector,
then in BRM, the mean is related to the explanatory variables as

9(0;)=x"B=1;, 3)
where B =(5,, B,,... 5,) isa (p +1)x1 vector of unknown regression coefficients. Logit,

probit, cloglog, and loglog are the used link functions of Eq. (2).

Ferrari and Cribari-Neto [4] extend the BRM to allow 6, to vary across observations.

The BRM with varying dispersion (BRMVD) is defined as
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9@)=x"B=n,
h@,)=s"a=49,

(4)
where a=(a,...,cq,) is a kx1 vector of unknown regression coefficients and
S; =(S;1,S;5, S, )€l is a k x1 known explanatory variable vector in addition to
X; = (X;1,X 2, X;,) Which are not exclusive, p+k <n.
The log-likelihood function of Eq. (3) is given by
((B,a) zzfi (G5, 6y)
i=1

=InT'(6,)—-InT'(1-6;)6,)+(6; 6, ~1)Iny, ®)
+{(1-6;)6,)—1}In (1_ Yi )’

where 6, =g *(;,) and 6,, =h (4 ). Differentiation of Eq. (4) with respect to the P

and a , respectively, is defined as

olB.a) _< a6y om

Up(Ba)=—20= =20 (i =8 o (6)
_olB.a) <)o (Y ~6,)+y (0y)-v(1-6,)0, dé, 08
Vulpo)= o _Z;{Hn(l—yi) }d&i o, ()

where Y, =In(y, /1-y,)), 6, =y (6,0,)-w((1-6,)6,), w() represents the
digamma function, dg, /dn, =1/9'(6,),and d6,, /d$ =1/h'(6, ). Then the maximum
likelihood estimator of B and @ are obtained from the solution of the nonlinear system

U() =0, where E=(p",a" )" [5].

Bure = (X" WX)X" Wi, (8)
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The ML estimator is asymptotically normally distributed with a covariance matrix that

corresponds to the inverse of the Hessian matrix

s o e[ P
COV(BMLE)_|: E[aﬁi 0B ﬂ =v (X WX)™ (9)

The mean squared error (MSE) of Eq. (7) can be obtained as

MSE (Byie ) = E Buie —B) Buie —B)
=tr v 1[(X" WX)™] (10)
P

ave L
=V —,
e

i
where A; is the eigenvalue of the X" WX matrix. In the presence of multicollinearity,

the matrix X' WX becomes ill-conditioned leading to high variance and instability of the

ML estimator of the beta regression parameters.

3. Ridge estimator

In the presence of multicollinearity, the matrix X" WX becomes ill-conditioned
leading to high variance and instability of the ML estimator of the BRM parameters. As a

remedy, Mansson and Shukur [6] proposed the BR ridge estimator (BRR) as

ﬁBRR = (XT WX+ kl)_le WXﬁMLE

A ) (11)
= (X" WX+kD™X" WY,
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where k >0. The ML estimator can be considered as a special estimator from Eqg. (10)

with k =0. Regardless of k value, the MSE of the B.g is smaller than that of ,, .

because the MSE of Bgrg is equal to [7]

o p A p o
MSE(Bgrg) =V~ ) ——— +k* J

—— 12
S +k)? T G k) (12

where «; is defined as the j" element of y,, . and » is the eigenvector of the X' WX

matrix. Comparing with the MSE of Eq. (11), MSE(Bggg ) is always small for k >0.

4. Liu estimator
Another popular biased estimator which is known as Liu estimator has been adopted

in Poisson regression model. The beta Liu estimator (BLE) is defined as
|§BLE = (XT WX+I)_1(XT WX +d I)ﬁMLE , (13)

where 0 <d <1. Regardless of d value, the MSE of the f, . is smaller than that of ,, .

because the MSE of . is equal to [7]

R ~ 43 ( +d)
MSE(Bg )=V _1/1 (/1 1)

+(d —)Z (14)

(/1 1)

5. Liu-type estimator
Alternative to Liu estimator, the Liu-type estimator was proposed by Liu [8] to
overcome the problem of severe multicollinearity. The beta Liu-type estimator (BLT) is

defined as
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ﬁBLT =(X"WX+k DX WX -d I)ﬁMLE ' (15)

where —o<d <o and k >0. In Eq. (14), the parameter k can be used totally to control
the conditioning of X" WX +k 1. After the reduction of X" WX +k 1 is reach a desirable

level, then the expected bias that is generated can be corrected with the so-called bias

correction parameter, d [9-13].

Liu [8] proved that, in terms of MSE, the Liu-type estimator has superior properties

over ridge estimator. The MSE of B, . is defined as

- & (4 -d)’ & a)
MSE (g ) =V ,-:1—/1,- 8 7 +(d +k) ;—(Zj K (16)

6. Two-parameter estimator
Following Asar and Geng [14] and Huang and Yang [15] the two-parameter estimator

in linear regression model is defined as:
Bree = (X' X+k ) (X' X+k d D)Boys , (17)

where 0<d <1 and k >0. For beta regression model, the two-parameter estimator

(BTP) is defined as:
Barp = (X" WX +k DX WX +k d Dfggy - (18)

It is obviously noted that the B, is a combination of two different estimators GRR and
GLE. Furthermore, if k =1, Eq. (18) will be the p, ¢ while if k =0, Eq. (17) will be the

Bsrw - Besides, when d =0, then Eq. (17) will equal Bgry -
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In terms of MSE, the two-parameter estimator has superior properties over ML

estimator. The MSE of B, is defined as

. (A +kd)? a?
MSE(Bgrp)=v 1Yy | ———+k?@d -1)> —— | (19)
BTP ,Zl 2 (25 +k)? (4; +k)?

7. Monte Carlo Simulation Study

In this section, a Monte Carlo simulation experiment is used to examine the
performance of our proposed estimator under different degrees of multicollinearity. The

response variable of N observations from beta regression model is generated as

y; Obeta(@yv), where Vv e{0.50155 and @=exp(x] »)/@+exp(X y)),

p
7 =110 7,) With Z]/f =land y, =y, =..=y, [16]. The explanatory variables have
j=1
been generated from the following:
X; =@—p* Y2z +pz,, 1 =1,2,..,n, j=12,.,p,where p represents the correlation

between the explanatory variables and z; ’s are independent standard normal pseudo-

random numbers. Since, we are interested in the effect of multicollinearity, in which the
degrees of correlation considered more important, then three values of the pairwise

={0.90,0.95,0.99}

correlation are considered with # . In addition, an increase in the

number of explanatory variables lead to an increase in MSE, then the number of the
explanatory variables is considered as p=3, p=7, and P =15. Further, three

representative values of the sample size are considered: 50, 100, and 200 because the

sample size has direct impact on the prediction accuracy.
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For a combination of these different values of n,v,p, and p the generated data is

repeated R = 500 times and the average MSE are determined.

The averaged MSE for all the combination of n,v,p, and p, are respectively

summarized in Tables 1 to 3. The best value of the averaged MSE is highlighted in bold.

According to the simulation results, we conclude the following:

1- Tables 1 to 3 show that two-parameter estimator, BTP, ranks first with respect to
MSE. In the second rank, BLT estimator performs better than both MLE and BRR
estimators. Additionally, MLE estimator has the worst performance among ridge,
Liu, Liu-type, and two-parameter estimators which is significantly impacted by the
multicollinearity.

2- Regarding the number of explanatory variables p, one can see that there is a
negative impact on MSE, where there are increasing in MSE values when the p
increasing from three variables to seven and fifteen variables.

3- However, in terms of precision parameter vV , the MSE values are decreasing when
v increasing. In addition, in terms of the sample size n, the MSE values decrease
when N increases, regardless the value of p,v ,and p.

Table 1: MSE values when n =50

v P P MLE BRR BLE BLT BTP

05 3 0.90 5.918 5.565 5.487 5.078 5.0239
0.95 7.015 6.05 5.776 5.692 5.6379

0.99 8.058 6.567 5.834 5.793 5.7389

7 0.90 6.035 5.395 5.146 4971 4.9169

0.95 8.08 6.226 5.67 5.521 5.4669

0.99 9.012 6.951 6.177 5.328 5.2739

15  0.90 7.272 5.023 4.848 4.672 4.6179

0.95 10.495 6.374 5.646 4.766 4.7119
0.99 13.034 6.701 5.473 4.737 4.6829

15 3 0.90 5.61 5.257 5.179 4.77 4.7159
0.95 6.707 5.742 5.468 5.384 5.3299
0.99 7.75 6.26 5.526 5.485 5.4309
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7 0.90 5.727 5.087 4.838 4.663 4.6089
0.95 7.771 5.918 5.362 5.213 5.1589

0.99 8.704 6.643 5.869 5.02 4.9659

15 0.90 6.964 4.715 4.54 4.364 4.3099
0.95 10.187 6.066 5.338 4.458 4.4039

0.99 12.726 6.393 5.165 4.43 4.3759

5 3 0.90 5.488 5.135 5.057 4.648 4.5939
0.95 6.585 5.62 5.346 5.262 5.2079

0.99 7.628 6.137 5.404 5.363 5.3089

7 0.90 5.605 4.965 4.716 4.541 4.4869
0.95 7.649 5.796 5.24 5.001 5.0369

0.99 8.582 6.521 5.747 4.898 4.8439

15 0.90 6.842 4.593 4418 4.242 41879

0.95 10.065 5.944 5.216 4.336 4.2819
0.99 12.604 6.271 5.043 4.307 4.2529

Table 2: MSE values when n =100

v P P MLE BRR BLE BLT BTP

05 3 0.90 3.612 3.259 3.181 2.772 2.7179
095  4.709 3.744 3.47 3.386 3.3319

0.99 5.752 4.261 3.528 3.487 3.4329

7 0.90 3.729 3.089 2.84 2.665 2.6109

0.95 5.774 3.92 3.364 3.215 3.1609

0.99 6.706 4.645 3.871 3.022 2.9679

15 090  4.966 2.717 2.542 2.366 2.3119

0.95 8.189 4.068 3.34 2.46 2.4059

0.99 10.728 4.395 3.167 2.431 2.3769

15 3 0.90 3.304 2.951 2.873 2.464 2.4099
095 4401 3.436 3.162 3.078 3.0239

0.99 5.444 3.954 3.22 3.179 3.1249

7 0.90 3.421 2.781 2.532 2.357 2.3029

0.95 5.465 3.612 3.056 2.907 2.8529

0.99 6.398 4.337 3.563 2.714 2.6599

15 090  4.658 2.409 2.234 2.058 2.0039

0.95 7.881 3.76 3.032 2.152 2.0979

0.99 10.42 4.087 2.859 2.124 2.0699

5 3 0.90 3.182 2.829 2.751 2.342 2.2879

095 4.279 3.314 3.04 2.956 2.9019
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0.99 5.322 3.831 3.098 3.057 3.0029
7 0.90 3.299 2.659 241 2.235 2.1809
0.95 5.343 3.49 2.934 2.785 2.7309
0.99 6.276 4.215 3.441 2.592 2.5379
15 090  4.536 2.287 2.112 1.936 1.8819
0.95 7.759 3.638 291 2.03 1.9759

0.99 10.298 3.965 2.737 2.001 1.9469
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Table 3: MSE values when n =200

v P P MLE BRR BLE BLT BTP

05 3 0.90 3.355 3.002 2.924 2.515 2.4609
095 4452 3.487 3.213 3.129 3.0749

0.99 5.495 4.004 3.271 3.23 3.1759

7 0.90 3.472 2.832 2.583 2.408 2.3539

0.95 5.517 3.663 3.107 2.958 2.9039

0.99 6.449 4.388 3.614 2.765 2.7109

15 090  4.709 2.46 2.285 2.109 2.0549

0.95 7.932 3.811 3.083 2.203 2.1489

0.99 10.471 4.138 291 2.174 2.1199

15 3 0.90 3.047 2.694 2.616 2.207 2.1529
095 4144 3.179 2.905 2.821 2.7669

0.99 5.187 3.697 2.963 2.922 2.8679

7 0.90 3.164 2.524 2.275 2.1 2.0459

0.95 5.208 3.355 2.799 2.65 2.5959

0.99 6.141 4.08 3.306 2.457 2.4029

15 090 4401 2.152 1.977 1.801 1.7469

0.95 7.624 3.503 2.775 1.895 1.8409

0.99 10.163 3.83 2.602 1.867 1.8129

5 3 0.90 2.925 2.572 2.494 2.085 2.0309
095  4.022 3.057 2.783 2.699 2.6449

0.99 5.065 3.574 2.841 2.8 2.7459

7 0.90 3.042 2.402 2.153 1.978 1.9239

0.95 5.086 3.233 2.677 2.528 2.4739

0.99 6.019 3.958 3.184 2.335 2.2809

15 090 4.279 2.03 1.855 1.679 1.6249

0.95 7.502 3.381 2.653 1.773 1.7189

0.99 10.041 3.708 2.48 1.744 1.6899

8. Conclusions

In this study, we conducted a comprehensive assessment of the literature on biased
estimators in beta regression models with multicollinearity. In terms of MSE, the two-
parameter estimator performs better than MLE, BRR, BLT, and BLE in real-world
applications. Finally, when there is multicollinearity in the beta regression model, the two-
parameter estimator should be used.
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